Group Actions and Invariant Theory

Group Actions and Invariant Theory
Title Group Actions and Invariant Theory PDF eBook
Author Andrzej Białynicki-Birula
Publisher American Mathematical Soc.
Pages 244
Release 1989
Genre Mathematics
ISBN 9780821860151

Download Group Actions and Invariant Theory Book in PDF, Epub and Kindle

This volume contains the proceedings of a conference, sponsored by the Canadian Mathematical Society, on Group Actions and Invariant Theory, held in August, 1988 in Montreal. The conference was the third in a series bringing together researchers from North America and Europe (particularly Poland). The papers collected here will provide an overview of the state of the art of research in this area. The conference was primarily concerned with the geometric side of invariant theory, including explorations of the linearization problem for reductive group actions on affine spaces (with a counterexample given recently by J. Schwarz), spherical and complete symmetric varieties, reductive quotients, automorphisms of affine varieties, and homogeneous vector bundles.

Actions and Invariants of Algebraic Groups

Actions and Invariants of Algebraic Groups
Title Actions and Invariants of Algebraic Groups PDF eBook
Author Walter Ricardo Ferrer Santos
Publisher CRC Press
Pages 479
Release 2017-09-19
Genre Mathematics
ISBN 1482239167

Download Actions and Invariants of Algebraic Groups Book in PDF, Epub and Kindle

Actions and Invariants of Algebraic Groups, Second Edition presents a self-contained introduction to geometric invariant theory starting from the basic theory of affine algebraic groups and proceeding towards more sophisticated dimensions." Building on the first edition, this book provides an introduction to the theory by equipping the reader with the tools needed to read advanced research in the field. Beginning with commutative algebra, algebraic geometry and the theory of Lie algebras, the book develops the necessary background of affine algebraic groups over an algebraically closed field, and then moves toward the algebraic and geometric aspects of modern invariant theory and quotients.

Lectures on Invariant Theory

Lectures on Invariant Theory
Title Lectures on Invariant Theory PDF eBook
Author Igor Dolgachev
Publisher Cambridge University Press
Pages 244
Release 2003-08-07
Genre Mathematics
ISBN 9780521525480

Download Lectures on Invariant Theory Book in PDF, Epub and Kindle

The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.

Reflection Groups and Invariant Theory

Reflection Groups and Invariant Theory
Title Reflection Groups and Invariant Theory PDF eBook
Author Richard Kane
Publisher Springer Science & Business Media
Pages 382
Release 2013-03-09
Genre Mathematics
ISBN 1475735421

Download Reflection Groups and Invariant Theory Book in PDF, Epub and Kindle

Reflection groups and invariant theory is a branch of mathematics that lies at the intersection between geometry and algebra. The book contains a deep and elegant theory, evolved from various graduate courses given by the author over the past 10 years.

An Introduction to Invariants and Moduli

An Introduction to Invariants and Moduli
Title An Introduction to Invariants and Moduli PDF eBook
Author Shigeru Mukai
Publisher Cambridge University Press
Pages 528
Release 2003-09-08
Genre Mathematics
ISBN 9780521809061

Download An Introduction to Invariants and Moduli Book in PDF, Epub and Kindle

Sample Text

Algorithms in Invariant Theory

Algorithms in Invariant Theory
Title Algorithms in Invariant Theory PDF eBook
Author Bernd Sturmfels
Publisher Springer Science & Business Media
Pages 202
Release 2008-06-17
Genre Mathematics
ISBN 3211774173

Download Algorithms in Invariant Theory Book in PDF, Epub and Kindle

This book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.

Symmetry, Representations, and Invariants

Symmetry, Representations, and Invariants
Title Symmetry, Representations, and Invariants PDF eBook
Author Roe Goodman
Publisher Springer Science & Business Media
Pages 731
Release 2009-07-30
Genre Mathematics
ISBN 0387798528

Download Symmetry, Representations, and Invariants Book in PDF, Epub and Kindle

Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.