Ground Motion Simulation Validation for Building Design and Response Assessment

Ground Motion Simulation Validation for Building Design and Response Assessment
Title Ground Motion Simulation Validation for Building Design and Response Assessment PDF eBook
Author Peng Zhong
Publisher
Pages 199
Release 2016
Genre
ISBN 9781339784328

Download Ground Motion Simulation Validation for Building Design and Response Assessment Book in PDF, Epub and Kindle

Earthquake ground motion records are used as inputs for seismic hazard analysis, development of ground motion prediction equations and nonlinear response history analysis of structures. Real records from past earthquake events have traditionally been recognized as the best representation of seismic input to these analysis. However, our current way of implementing recorded ground motions is poorly constrained and suffers from the paucity of certain condition ground motions, such as the one with short distance and large magnitude. Meanwhile, even though the scaled ground motion is capable of matching the target spectrum, the content of frequency domain and ground motion parameters become unrealistic. With the rapid growth of computational ability and efficiency of computers, simulated ground motion can be an alternative to provide detailed and accurate prediction of earthquake effect. At the same time, simulated ground motions can provide a better representation of the whole ground motion generation process, such as fault rupture, wave propagation phenomena, and site response characterization. Hence, the aforementioned disadvantage of recorded ground motion can be overcame.Despite ground motion simulations have existed for decades, and the design code, such as ASCE/SEI 7-10 (ASCE, 2010), allow use of simulated ground motions for engineering practice, engineers still worried about the stability in ground motion simulation process and similarity between response of engineered structures to similar simulated and recorded ground motions. In order to draw simulated ground motions into engineering applications and make them practical, this dissertation is making contribution to address this issue. Simulated ground motions have to be validated and compared with recorded ground motions to prove their equivalence in engineering applications.This dissertation proposes a simulation validation framework. First step: Identify ground motion waveform parameters that well correlate with response of Multi-Degree of Freedom (MDOF) buildings and bridges. Second step: Develop goodness-of-fit measures and error functions that can describe the difference between simulated and recorded ground motion waveform characteristics and their effect on MDOF systems. Third step: Device the required update to ground motion simulation methods through which better simulations are possible. Forth step: Assess the current state of simulated ground motions for engineering applications.In general, simulated ground motions are found to be an effective surrogate and replenishment of natural records in engineering applications. However, certain drawbacks are detected, 1) Simulated ground motions are likelihood to mismatch certain ground motion parameters, for example, Arias intensity, duration and so on; 2) Structural behavior resulting from recorded ground motions and simulated ground motions are different. The difference stems from the fact that simulated motions are mostly pulse like motions. Because the simulation methods are still developing, our intent is not ranking or classifying them, but rather to provide feedback to update ground motion simulation techniques such that future simulations are more representative of recorded motions.

Ground Motion Simulations

Ground Motion Simulations
Title Ground Motion Simulations PDF eBook
Author Lynne Schleiffarth Burks
Publisher
Pages
Release 2014
Genre
ISBN

Download Ground Motion Simulations Book in PDF, Epub and Kindle

Engineers use earthquake ground motions for a variety of reasons, including seismic hazard assessment, calibration of ground motion prediction equations (GMPEs), and input to nonlinear response history analysis. These analyses require a significant number of ground motions and for some scenarios, such as earthquakes with large magnitudes and short distances, it may be difficult to obtain a sufficient number of ground motion recordings. When sufficient recordings do not exist, engineers modify available recordings using scaling or spectrum matching, or they use ground motion simulations. Ground motion simulations have existed for decades, but recent advances in simulation methods due to improved source characterization and wave propagation, coupled with increased computing power, have increased potential benefits for engineers. But before simulations can be used in engineering applications, simulations must be accessible and consistent with natural observations. This dissertation contributes to the latter issue, and it investigates the application of simulations to specific engineering problems. The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is an open-source software distribution that enables third-party users to simulate ground motions using research code contributed by model developers. Because the BBP allows users to compute their own simulations with little knowledge of the underlying implementation and it ensures that all calculations are reproducible, it is extremely valuable for simulation validation and engineering applications. In this dissertation, the BBP is evaluated as a simulation generation tool from an engineering perspective. Ground motions are simulated to study parameters of engineering interest, such as high-frequency variability, near-fault ground motions, and local site response. Though some parameters need further development, such as site response (which is currently implemented using simple empirical amplification), the BBP proves to be an effective tool for facilitating these types of engineering studies. This dissertation proposes a simulation validation framework based on simple and robust proxies for the response of more complicated structures. We compile a list of proxies with robust empirical models that are insensitive to changes in earthquake scenario and do not rely on extrapolation for rarely observed events. Because predictions of these proxies are reliable under a variety of earthquake events, we can confidently compare them with simulations. The proposed proxies include correlation of epsilon across periods, ratio of maximum to median response across horizontal orientations, and ratio of inelastic to elastic displacement. The validation framework is applied to example simulations and successfully exposes some parameters that need work, such as variability and correlation of spectral acceleration. Finally, this dissertation investigates the application of simulations to response history analysis and fling-step characterization. A 3D nonlinear structural model is analyzed using recordings and simulations with similar elastic response spectra. The structural performance and resulting design decisions are similar, indicating that simulations are effective for response history analysis subject to certain conditions. To investigate fling-step, we extract fling pulses from a large set of simulations. Extracted fling properties such as amplitude and period are then compared to specially-processed recordings and relevant empirical models for surface displacement and pulse period. Reasonably good agreement is found between simulations, recordings, and empirical models. In general, ground motion simulations are found to be an effective alternative or supplement to recordings in several engineering applications. Because simulation methods are still developing, this work is not intended as an evaluation of existing methods, but rather as a development of procedures that can be used in ongoing work.

Ground Motion Simulation Validation Based on Loss Metrics

Ground Motion Simulation Validation Based on Loss Metrics
Title Ground Motion Simulation Validation Based on Loss Metrics PDF eBook
Author Poojitha Shashi
Publisher
Pages 59
Release 2017
Genre
ISBN 9780355066098

Download Ground Motion Simulation Validation Based on Loss Metrics Book in PDF, Epub and Kindle

The effect of the earthquake ground motion parameters on the probabilistic loss estimation of buildings is the major interest of this study. For the seismic performance assessment, real ground motion records from the past earthquakes are required. Estimation of repair costs in future earthquakes is the major component for seismic loss analysis. This study addresses the sensitivity of the statistical characteristics of ground motions contributing to the building loss. Among these characteristics are the ground-shaking intensity (Arias Intensity), duration, and frequency at the middle of strong-shaking phase of the ground motion. These parameters are vital in determining the seismic response of the building structure. A fine study on the sensitivity of the seismic response and corresponding loss of the building structure to ground motions model parameters is carried out using Performance-based Earth- quake Engineering and Performance Assessment Computational Tool, respectively. But due to the scarcity of moderate to large earthquakes, the real records fail to match the required characteristics of motions, as there are insufficient set of data available for analysis to be carried out. Even, the of technique scaling ground motions results in overall unrealistic properties. This has led to the simulation of ground motions which will provide the additional and hopefully accurate predicted information on characteristics of the moderate to large earthquakes. Hence, a fully non-stationary stochastic model for strong earthquake ground motion model is considered which employs the statistical characteristics (waveform parameters) as model parameters matched with those of identified for a large sample of recorded ground motions for specified earthquake and site characteristics, to deliver simulated ground motions to examine the building loss metrics, which depends on the uncertainties in various analysis process starting from obtaining Intensity Measure (IM), Demand parameters (EDPs) to the repair cost estimates. From the predictive equations, specified earthquake and site characteristics results in the model parameters.Further, the validity of simulated ground motion time series representing the real ground shaking during future earthquakes is a crucial step. This study employs the hybrid broad- band ground motion simulation applied simulations to validate against the real records. With the help of hybrid approach, making use of wave propagation phenomena and site response characterization, effort has been taken for validation of these simulated ground motions is conducted for the sensitivity of seismic response and loss for these simulated ground motions.

Utilization of Physics-based Simulated Earthquake Ground Motions for Performance Assessment of Tall Buildings

Utilization of Physics-based Simulated Earthquake Ground Motions for Performance Assessment of Tall Buildings
Title Utilization of Physics-based Simulated Earthquake Ground Motions for Performance Assessment of Tall Buildings PDF eBook
Author Nenad Bijelić
Publisher
Pages
Release 2018
Genre
ISBN

Download Utilization of Physics-based Simulated Earthquake Ground Motions for Performance Assessment of Tall Buildings Book in PDF, Epub and Kindle

Databases of recorded motion are limited despite the increasing amount of data collected through strong motion instrumentation programs. Particular lack of data exists for large magnitude events and at close distances as well as on earthquakes in deep sedimentary basins. Additionally, databases of recorded motions are also limited in representation of energy at long periods due to the useable frequencies of recording instruments. This lack of data is currently partially addressed through assumption of ergodicity in development of empirical ground motion prediction equations (GMPEs). Nevertheless, challenges remain for calibration of empirical GMPEs as used in conventional approaches for probabilistic estimation of seismic hazard. At the same time, limited data on strong earthquakes and their effect on structures poses challenges for making reliable risk assessments particularly for tall buildings. For instance, while the collapse safety of tall buildings is likely controlled by large magnitude earthquakes with long du- rations and high long-period content, there are few available recorded ground motions to evaluate these issues. The influence of geologic basins on amplifying ground motion effects raises additional questions. Absent recorded motions from past large magnitude earthquakes, physics-based ground motion simulations provide a viable alternative due to the ability to consider extreme ground motions while being inherently site-specific and explicitly considering instances not well constrained by limited empirical data. This thesis focuses on utilization of physics-based simulated earthquake ground motions for performance assessment of tall buildings with three main goals: (1) developing confidence in the use of simulated ground motions through comparative assessments of recorded and simulated motions; (2) identifying important characteristics of extreme ground motions for col- lapse safety of tall buildings; (3) exploring areas where simulated ground motions provide significant advantages over recorded motions for performance-based engineering. To gain confidence in the use of simulated motions for full performance assessment of tall buildings, a 'similar intensity measure' validation study was performed. Structural responses to ground motions simulated with different methods on the Southern California Earthquake Center (SCEC) Broadband Platform (BBP) are contrasted to recorded motions from PEER NGA database with similar spectral shape and significant durations. Two tall buildings, a 20-story concrete frame and a 42-story concrete core wall building, are analyzed at increasing levels of ground motion intensity, up to structural collapse, to check for statistically significant differences between the responses to simulated and recorded motions. Considered demands include story drift ratios, floor accelerations and collapse response. These comparisons yield similar results in most cases but also reveal instances where certain simulated ground motions can result in biased responses. The source of bias is traced to differences in correlations of spectral values in some of the stochastic ground motion simulations. When the differences in correlations are removed, simulated and recorded motions yield comparable results. Moving beyond validation, the thesis also explored areas where the use of simulated motions provides advantages over approaches based on limited databases of recorded motions for performance-based engineering. One such area is seismic risk in deep sedimentary basins which is studied by examining collapse risk and drift demands of a 20-story archetype tall building utilizing ground motions at four sites in the Los Angeles basin. Seismic demands of the building are calculated form nonlinear structural analyses using large datasets (~500,000 ground motions per site) of unscaled, site-specific simulated seismograms. Seismic hazard and building performance from direct analysis of SCEC CyberShake motions are contrasted with values obtained based on 'conventional' approaches that rely on recorded motions coupled with probabilistic seismic hazard assessments. The analysis shows that, depending on the location of the site within the basin, the two approaches can yield drastically different results. For instance, at a deep basin site the CyberShake-based analysis yields around seven times larger mean annual frequency of collapse ( c) and significantly higher drift demands (e.g. drift demand of 1% is exceeded around three times more frequently) compared to the conventional approach. Both the hazard as well as the spectral shapes of the motions are shown to drive the differences in responses. Deaggregation of collapse risk is performed to identify the relative contributions of earthquake fault ruptures, linking building responses with specific seismograms and contrasting collapse risk with hazard. The effect of earthquake ground motions in deep sedimentary basins on structural collapse risk is further studied through the use of CyberShake earthquake simulations in the Los Angeles basin. Distinctive waveform characteristics of deep basin seismograms are used to classify the ground motions into several archetype groups, and the damaging influence of the basin effects are evaluated by comparing nonlinear structural responses under comparable basin and non-basin ground motions. The deep basin ground motions are observed to have larger durations and spectral intensities than non-basin motions for vibration periods longer than about 1.5 seconds, which can increase the relative structural collapse risk by up to 20 percent between ground motions with otherwise comparable spectral accelerations and significant durations. Two new metrics, termed sustained amplitude response spectra (RSx spectra) and significant duration spectra (Da spectra), are proposed to quantify period-dependent duration effects that are not otherwise captured by conventional ground motion intensity measures. The proposed sustained amplitude response spectra and significant duration spectra show promise for characterizing the damaging effects of long duration features of basin ground motions on buildings and other structures. The large database of CyberShake simulations is utilized to re-examine the relationships between engineering demand parameters and input ground motions on structural response. Focusing on collapse response, machine learning techniques are applied to results of about two million nonlinear time history analyses of an archetype 20-story tall building performed using CyberShake ground motions. The resulting feature selection (based on regularized logistic regression) generally confirms existing understanding of collapse predictors as gained from scaled recorded motions but also reveals the benefit of some novel intensity measures (IMs), in particular the RSx spectral features. In addition, the statistical interrogations of the large collection of hazard-consistent simulations demonstrate the utility of different IMs for collapse predictions in a way that is not possible with recorded motions. A small subset of robust IMs is identified and used in development of an efficient collapse classification algorithm, which is tested on benchmark results from other CyberShake sites. The classification algorithm yields promising results for application to regional risk assessment of building performance.

Evaluation of Ground Motion Intensity-response Relations for Performance-based Design of Frame Buildings

Evaluation of Ground Motion Intensity-response Relations for Performance-based Design of Frame Buildings
Title Evaluation of Ground Motion Intensity-response Relations for Performance-based Design of Frame Buildings PDF eBook
Author Kamel Abdelkader Tayebi
Publisher
Pages 1094
Release 2002
Genre
ISBN

Download Evaluation of Ground Motion Intensity-response Relations for Performance-based Design of Frame Buildings Book in PDF, Epub and Kindle

Site-specific Seismic Ground Motions for the Design of Buildings and Other Structures

Site-specific Seismic Ground Motions for the Design of Buildings and Other Structures
Title Site-specific Seismic Ground Motions for the Design of Buildings and Other Structures PDF eBook
Author Praveen K. Malhotra
Publisher ASCE Press
Pages 117
Release 2022
Genre Earthquake hazard analysis
ISBN 9780784415962

Download Site-specific Seismic Ground Motions for the Design of Buildings and Other Structures Book in PDF, Epub and Kindle

"Malhotra provides a step-by-step approach to properly conduct site-specific GMHA and SRA, and informs readers of various resources that are available to perform GMHA and SRA"--

An Introduction to Ground Motion and Geological Hazards Assessment

An Introduction to Ground Motion and Geological Hazards Assessment
Title An Introduction to Ground Motion and Geological Hazards Assessment PDF eBook
Author J. Paul Guyer, P.E., R.A.
Publisher Guyer Partners
Pages 43
Release 2018-02-03
Genre Technology & Engineering
ISBN

Download An Introduction to Ground Motion and Geological Hazards Assessment Book in PDF, Epub and Kindle

Introductory technical guidance for civil, structural and geotechnical engineers interested in earthquake engineering. Here is what is discussed: 1. SPECIFICATION OF GROUND MOTION 2. DESIGN PARAMETERS FOR GROUND MOTION A 3. DESIGN PARAMETERS FOR GROUND MOTION B 4. SITE-SPECIFIC DETERMINATION OF GROUND MOTION 5. GEOLOGIC HAZARDS.