Ground Motion and Variability from 3-D Deterministic Broadband Simulations

Ground Motion and Variability from 3-D Deterministic Broadband Simulations
Title Ground Motion and Variability from 3-D Deterministic Broadband Simulations PDF eBook
Author Kyle Withers
Publisher
Pages 196
Release 2016
Genre
ISBN

Download Ground Motion and Variability from 3-D Deterministic Broadband Simulations Book in PDF, Epub and Kindle

The accuracy of earthquake source descriptions is a major limitation in high-frequency ($>1$ Hz) deterministic ground motion prediction, which is critical for performance-based design by building engineers. With the recent addition of realistic fault topography in 3D simulations of earthquake source models, ground motion can be deterministically calculated more realistically up to higher frequencies. We first introduce a technique to model frequency-dependent attenuation and compare its impact on strong ground motions recorded for the 2008 Chino Hills earthquake. Then, we model dynamic rupture propagation for both a generic strike-slip event and blind thrust scenario earthquakes matching the fault geometry of the 1994 Mw 6.7 Northridge earthquake along rough faults up to 8 Hz. We incorporate frequency-dependent attenuation via a power law above a reference frequency in the form $Q_0f^n$ ,with high accuracy down to Q values of 15, and include nonlinear effects via Drucker-Prager plasticity. We model the region surrounding the fault with and without small-scale medium complexity in both a 1D layered model characteristic of southern California rock and a 3D medium extracted from the SCEC CVMSi.426 including a near-surface geotechnical layer. We find that the spectral acceleration from our models are within 1-2 interevent standard deviations from recent ground motion prediction equations (GMPEs) and compare well with that of recordings from strong ground motion stations at both short and long periods. At periods shorter than 1 second, Q(f) is needed to match the decay of spectral acceleration seen in the GMPEs as a function of distance from the fault. We find that the similarity between the intraevent variability of our simulations and observations increases when small-scale heterogeneity and plasticity are included, extremely important as uncertainty in ground motion estimates dominates the overall uncertainty in seismic risk. In addition to GMPEs, we compare with simple proxy metrics to evaluate the performance of our deterministic models and to determine the importance of different complexities within our model. We find that 3D heterogeneity, at both the long and short scale-lengths, is necessary to agree with data, and should be included in future simulations to best model the ground motion from earthquakes.

Quantification of Ground Motions by Broadband Simulations

Quantification of Ground Motions by Broadband Simulations
Title Quantification of Ground Motions by Broadband Simulations PDF eBook
Author Katrin Kieling
Publisher
Pages 0
Release 2016
Genre
ISBN

Download Quantification of Ground Motions by Broadband Simulations Book in PDF, Epub and Kindle

In many procedures of seismic risk mitigation, ground motion simulations are needed to test systems or improve their effectiveness. For example they may be used to estimate the level of ground shaking caused by future earthquakes. Good physical models for ground motion simulation are also thought to be important for hazard assessment, as they could close gaps in the existing datasets. Since the observed ground motion in nature shows a certain variability, part of which cannot be explained by macroscopic parameters such as magnitude or position of an earthquake, it would be desirable that a good physical model is not only able to produce one single seismogram, but also to reveal this natural variability. In this thesis, I develop a method to model realistic ground motions in a way that is computationally simple to handle, permitting multiple scenario simulations. I focus on two aspects of ground motion modelling. First, I use deterministic wave propagation for the whole frequency range - from static deformation to approximately 10 Hz - but account for source variability by implementing self-similar slip distributions and rough fault interfaces. Second, I scale the source spectrum so that the modelled waveforms represent the correct radiated seismic energy. With this scaling I verify whether the energy magnitude is suitable as an explanatory variable, which characterises the amount of energy radiated at high frequencies - the advantage of the energy magnitude being that it can be deduced from observations, even in real-time. Applications of the developed method for the 2008 Wenchuan (China) earthquake, the 2003 Tokachi-Oki (Japan) earthquake and the 1994 Northridge (California, USA) earthquake show that the fine source discretisations combined with the small scale source variability ensure that high frequencies are satisfactorily introduced, justifying the deterministic wave propagation approach even at high frequencies. I demonstrate that the energy magnitude can be used to calibrate the high-frequency content in ground motion simulations. Because deterministic wave propagation is applied to the whole frequency range, the simulation method permits the quantification of the variability in ground motion due to parametric uncertainties in the source description. A large number of scenario simulations for an M=6 earthquake show that the roughness of the source as well as the distribution of fault dislocations have a minor effect on the simulated variability by diminishing directivity effects, while hypocenter location and rupture velocity more strongly influence the variability. The uncertainty in energy magnitude, however, leads to the largest differences of ground motion amplitude between different events, resulting in a variability which is larger than the one observed. For the presented approach, this dissertation shows (i) the verification of the computational correctness of the code, (ii) the ability to reproduce observed ground motions and (iii) the validation of the simulated ground motion variability. Those three steps are essential to evaluate the suitability of the method for means of seismic risk mitigation.

Encyclopedia of Earthquake Engineering

Encyclopedia of Earthquake Engineering
Title Encyclopedia of Earthquake Engineering PDF eBook
Author Michael Beer
Publisher Springer
Pages 3953
Release 2016-01-30
Genre Technology & Engineering
ISBN 9783642353437

Download Encyclopedia of Earthquake Engineering Book in PDF, Epub and Kindle

The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 300 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well informed without needing to deal with the details of specialist understanding. The encyclopedia’s content provides technically-inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encyclopedia also aims to provide cross-disciplinary and cross-domain information to domain-experts. This is the first single reference encyclopedia of this breadth and scope that brings together the science, engineering and technological aspects of earthquakes and structures.

Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations

Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations
Title Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations PDF eBook
Author Luis A. Dalguer
Publisher Birkhäuser
Pages 333
Release 2017-12-20
Genre Science
ISBN 3319727095

Download Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations Book in PDF, Epub and Kindle

This volume collects several extended articles from the first workshop on Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI). Held in 2015, the workshop was organized by the IAEA to disseminate the use of physics-based fault-rupture models for ground motion prediction in seismic hazard assessments (SHA). The book also presents a number of new contributions on topics ranging from the seismological aspects of earthquake cycle simulations for source scaling evaluation, seismic source characterization, source inversion and physics-based ground motion modeling to engineering applications of simulated ground motion for the analysis of seismic response of structures. Further, it includes papers describing current practices for assessing seismic hazard in terms of nuclear safety in low seismicity areas, and proposals for physics-based hazard assessment for critical structures near large earthquakes. The papers validate and verify the models by comparing synthetic results with observed data and empirical models. The book is a valuable resource for scientists, engineers, students and practitioners involved in all aspects of SHA.

Enhancement and Validation of Ground Motion Simulations

Enhancement and Validation of Ground Motion Simulations
Title Enhancement and Validation of Ground Motion Simulations PDF eBook
Author Nan Wang
Publisher
Pages 251
Release 2021
Genre
ISBN

Download Enhancement and Validation of Ground Motion Simulations Book in PDF, Epub and Kindle

Accurate prediction of strong ground motion is central to seismic hazard analysis in order to estimate losses during major earthquakes. Ground motion simulations are essential to seismic ground motion prediction, especially for locations of infrequent observations, such as large magnitude and short distance events, where simulations can provide a viable alternative to data. Therefore, enhancement and validation of ground motion simulations, the primary goal of this dissertation, are highly desirable. In Chapter 2, we quantify the effects of four important factors on ground motions from large normal-faulting earthquakes on the Wasatch fault in the Salt Lake Basin: rupture direction, location on the hanging wall versus the footwall, deep 3D basin structure, and the distance from the rupture in the near field range. In Chapter 3, we attempt to validate the presence of several proposed waveguides in the Los Angeles area using 3D simulations and observed data from ambient noise. Here, we compare the numerical and empirical surface-to-surface Green tensors for virtual sources located on the San Andreas Fault. The regions of large peak motions caused by waveguide focusing in the simulations show generally good agreement with increases in the Green tensor amplitudes, supporting the presence of two separate waveguides in greater Los Angeles. In Chapters 4 and 5, we develop an empirical frequency-dependent spatial ground motion correlation model and methods to rectify simulation techniques that otherwise produce synthetic time histories deficient in inter-frequency and spatial correlation structure. The methods are tested using a hybrid deterministic-stochastic broadband ground motion generation module, where our method reproduces the empirical correlations well for a large number of realizations without biasing the fit of the median of the spectral accelerations to data. We find that the best fit of the inter-frequency correlation to data is obtained assuming that the horizontal components are correlated with a correlation coefficient of about 0.7.

Ground Motion Simulations

Ground Motion Simulations
Title Ground Motion Simulations PDF eBook
Author Lynne Schleiffarth Burks
Publisher
Pages
Release 2014
Genre
ISBN

Download Ground Motion Simulations Book in PDF, Epub and Kindle

Engineers use earthquake ground motions for a variety of reasons, including seismic hazard assessment, calibration of ground motion prediction equations (GMPEs), and input to nonlinear response history analysis. These analyses require a significant number of ground motions and for some scenarios, such as earthquakes with large magnitudes and short distances, it may be difficult to obtain a sufficient number of ground motion recordings. When sufficient recordings do not exist, engineers modify available recordings using scaling or spectrum matching, or they use ground motion simulations. Ground motion simulations have existed for decades, but recent advances in simulation methods due to improved source characterization and wave propagation, coupled with increased computing power, have increased potential benefits for engineers. But before simulations can be used in engineering applications, simulations must be accessible and consistent with natural observations. This dissertation contributes to the latter issue, and it investigates the application of simulations to specific engineering problems. The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is an open-source software distribution that enables third-party users to simulate ground motions using research code contributed by model developers. Because the BBP allows users to compute their own simulations with little knowledge of the underlying implementation and it ensures that all calculations are reproducible, it is extremely valuable for simulation validation and engineering applications. In this dissertation, the BBP is evaluated as a simulation generation tool from an engineering perspective. Ground motions are simulated to study parameters of engineering interest, such as high-frequency variability, near-fault ground motions, and local site response. Though some parameters need further development, such as site response (which is currently implemented using simple empirical amplification), the BBP proves to be an effective tool for facilitating these types of engineering studies. This dissertation proposes a simulation validation framework based on simple and robust proxies for the response of more complicated structures. We compile a list of proxies with robust empirical models that are insensitive to changes in earthquake scenario and do not rely on extrapolation for rarely observed events. Because predictions of these proxies are reliable under a variety of earthquake events, we can confidently compare them with simulations. The proposed proxies include correlation of epsilon across periods, ratio of maximum to median response across horizontal orientations, and ratio of inelastic to elastic displacement. The validation framework is applied to example simulations and successfully exposes some parameters that need work, such as variability and correlation of spectral acceleration. Finally, this dissertation investigates the application of simulations to response history analysis and fling-step characterization. A 3D nonlinear structural model is analyzed using recordings and simulations with similar elastic response spectra. The structural performance and resulting design decisions are similar, indicating that simulations are effective for response history analysis subject to certain conditions. To investigate fling-step, we extract fling pulses from a large set of simulations. Extracted fling properties such as amplitude and period are then compared to specially-processed recordings and relevant empirical models for surface displacement and pulse period. Reasonably good agreement is found between simulations, recordings, and empirical models. In general, ground motion simulations are found to be an effective alternative or supplement to recordings in several engineering applications. Because simulation methods are still developing, this work is not intended as an evaluation of existing methods, but rather as a development of procedures that can be used in ongoing work.

Seismic Hazard and Risk Analysis

Seismic Hazard and Risk Analysis
Title Seismic Hazard and Risk Analysis PDF eBook
Author Jack Baker
Publisher Cambridge University Press
Pages 596
Release 2021-10-21
Genre Technology & Engineering
ISBN 1108604900

Download Seismic Hazard and Risk Analysis Book in PDF, Epub and Kindle

Seismic hazard and risk analyses underpin the loadings prescribed by engineering design codes, the decisions by asset owners to retrofit structures, the pricing of insurance policies, and many other activities. This is a comprehensive overview of the principles and procedures behind seismic hazard and risk analysis. It enables readers to understand best practises and future research directions. Early chapters cover the essential elements and concepts of seismic hazard and risk analysis, while later chapters shift focus to more advanced topics. Each chapter includes worked examples and problem sets for which full solutions are provided online. Appendices provide relevant background in probability and statistics. Computer codes are also available online to help replicate specific calculations and demonstrate the implementation of various methods. This is a valuable reference for upper level students and practitioners in civil engineering, and earth scientists interested in engineering seismology.