Green Machine Learning Protocols for Future Communication Networks

Green Machine Learning Protocols for Future Communication Networks
Title Green Machine Learning Protocols for Future Communication Networks PDF eBook
Author Saim Ghafoor
Publisher CRC Press
Pages 223
Release 2023-10-25
Genre Computers
ISBN 1000968928

Download Green Machine Learning Protocols for Future Communication Networks Book in PDF, Epub and Kindle

Machine learning has shown tremendous benefits in solving complex network problems and providing situation and parameter prediction. However, heavy resources are required to process and analyze the data, which can be done either offline or using edge computing but also requires heavy transmission resources to provide a timely response. The need here is to provide lightweight machine learning protocols that can process and analyze the data at run time and provide a timely and efficient response. These algorithms have grown in terms of computation and memory requirements due to the availability of large data sets. These models/algorithms also require high levels of resources such as computing, memory, communication, and storage. The focus so far was on producing highly accurate models for these communication networks without considering the energy consumption of these machine learning algorithms. For future scalable and sustainable network applications, efforts are required toward designing new machine learning protocols and modifying the existing ones, which consume less energy, i.e., green machine learning protocols. In other words, novel and lightweight green machine learning algorithms/protocols are required to reduce energy consumption which can also reduce the carbon footprint. To realize the green machine learning protocols, this book presents different aspects of green machine learning for future communication networks. This book highlights mainly the green machine learning protocols for cellular communication, federated learning-based models, and protocols for Beyond Fifth Generation networks, approaches for cloud-based communications, and Internet-of-Things. This book also highlights the design considerations and challenges for green machine learning protocols for different future applications.

Green Machine-learning Protocols for Future Communication Networks

Green Machine-learning Protocols for Future Communication Networks
Title Green Machine-learning Protocols for Future Communication Networks PDF eBook
Author Saim Ghafoor
Publisher
Pages 0
Release 2024
Genre Computer network protocols
ISBN 9781032136875

Download Green Machine-learning Protocols for Future Communication Networks Book in PDF, Epub and Kindle

"Machine Learning has shown tremendous benefits in solving complex network problems and providing situation and parameter prediction. However, heavy resources are required to process and analyze the data which can be done either offline or using edge computing, which also requires heavy transmission resources to provide a timely response. The need here is to provide lightweight machine learning protocols that can process and analyze the data at run time and provide a timely and efficient response. These algorithms have grown in terms of computation and memory requirements due to the availability of large data sets. These models/algorithms also require high levels of resources such as computing, memory, communication, and storage. The focus so far was on producing highly accurate models for these communication networks without considering the energy consumption of these machine-learning algorithms. For future scalable and sustainable network applications, efforts are required towards designing new machine learning protocols and modifying the existing ones, which consume less energy i.e., green machine learning protocols. In other words, novel and lightweight green machine learning algorithms/protocols are required to reduce energy consumption which can also reduce the carbon footprint. To realize the green machine learning protocols, in this book, different aspects of green machine learning for future communication networks are presented. This book highlights mainly the green machine learning protocols for cellular communication, federated learning-based models and protocols for beyond 5th-generation networks, approaches for cloud-based communications, and Internet-of-Things. This book also highlights the design considerations and challenges for green machine learning protocols for different future applications"--

Applications of Machine Learning in UAV Networks

Applications of Machine Learning in UAV Networks
Title Applications of Machine Learning in UAV Networks PDF eBook
Author Hassan, Jahan
Publisher IGI Global
Pages 425
Release 2024-01-17
Genre Computers
ISBN

Download Applications of Machine Learning in UAV Networks Book in PDF, Epub and Kindle

Applications of Machine Learning in UAV Networks presents a pioneering exploration into the symbiotic relationship between machine learning techniques and UAVs. In an age where UAVs are revolutionizing sectors as diverse as agriculture, environmental preservation, security, and disaster response, this meticulously crafted volume offers an analysis of the manifold ways machine learning drives advancements in UAV network efficiency and efficacy. This book navigates through an expansive array of domains, each demarcating a pivotal application of machine learning in UAV networks. From the precision realm of agriculture and its dynamic role in yield prediction to the ecological sensitivity of biodiversity monitoring and habitat restoration, the contours of each domain are vividly etched. These explorations are not limited to the terrestrial sphere; rather, they extend to the pivotal aerial missions of wildlife conservation, forest fire monitoring, and security enhancement, where UAVs adorned with machine learning algorithms wield an instrumental role. Scholars and practitioners from fields as diverse as machine learning, UAV technology, robotics, and IoT networks will find themselves immersed in a confluence of interdisciplinary expertise. The book's pages cater equally to professionals entrenched in agriculture, environmental studies, disaster management, and beyond.

AI-Enhanced Teaching Methods

AI-Enhanced Teaching Methods
Title AI-Enhanced Teaching Methods PDF eBook
Author Ahmed, Zeinab E.
Publisher IGI Global
Pages 426
Release 2024-04-22
Genre Education
ISBN

Download AI-Enhanced Teaching Methods Book in PDF, Epub and Kindle

The digital age has ushered in an era where students must be equipped not only with traditional knowledge but also with the skills to navigate an increasingly interconnected and technologically driven world. As traditional teaching methods encounter the complexities of the 21st century, the demand for innovation becomes more apparent. This paves the way for the era of artificial intelligence (AI), a technological frontier that carries the potential to reshape education fundamentally. AI-Enhanced Teaching Methods recognizes the urgency of the ongoing technological shift and delves into an exploration of how AI can be effectively harnessed to redefine the learning experience. The book serves as a guide for educators, offering insights into navigating between conventional teaching methodologies and the possibilities presented by AI. It provides an understanding of AI's role in education, covering topics from machine learning to natural language processing. Ethical considerations, including privacy and bias, are thoroughly addressed with thoughtful solutions as well. Additionally, the book provides valuable support for administrators, aiding in the integration of these technologies into existing curricula.

Machine Learning for Future Wireless Communications

Machine Learning for Future Wireless Communications
Title Machine Learning for Future Wireless Communications PDF eBook
Author Fa-Long Luo
Publisher John Wiley & Sons
Pages 490
Release 2020-02-10
Genre Technology & Engineering
ISBN 1119562252

Download Machine Learning for Future Wireless Communications Book in PDF, Epub and Kindle

A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.

Secure Communication for 5G and IoT Networks

Secure Communication for 5G and IoT Networks
Title Secure Communication for 5G and IoT Networks PDF eBook
Author S Velliangiri
Publisher Springer Nature
Pages 248
Release 2021-10-28
Genre Technology & Engineering
ISBN 303079766X

Download Secure Communication for 5G and IoT Networks Book in PDF, Epub and Kindle

This book highlights research on secure communication of 5G and the Internet of Things (IoT) Networks, along with related areas to ensure secure and Internet-compatible IoT systems. The authors not only discuss 5G and IoT security and privacy challenges, but also energy efficient approaches to improving the ecosystems through communication. The book addresses the secure communication and privacy of the 5G and IoT technologies, while also revealing the impact of IoT technologies on several scenarios in smart city design. Intended as a comprehensive introduction, the book offers in-depth analysis and provides scientists, engineers and professionals the latest techniques, frameworks and strategies used in 5G and IoT technologies.

Computing in Communication Networks

Computing in Communication Networks
Title Computing in Communication Networks PDF eBook
Author Frank H. P. Fitzek
Publisher Academic Press
Pages 524
Release 2020-05-20
Genre Technology & Engineering
ISBN 0128209046

Download Computing in Communication Networks Book in PDF, Epub and Kindle

Computing in Communication Networks: From Theory to Practice provides comprehensive details and practical implementation tactics on the novel concepts and enabling technologies at the core of the paradigm shift from store and forward (dumb) to compute and forward (intelligent) in future communication networks and systems. The book explains how to create virtualized large scale testbeds using well-established open source software, such as Mininet and Docker. It shows how and where to place disruptive techniques, such as machine learning, compressed sensing, or network coding in a newly built testbed. In addition, it presents a comprehensive overview of current standardization activities. Specific chapters explore upcoming communication networks that support verticals in transportation, industry, construction, agriculture, health care and energy grids, underlying concepts, such as network slicing and mobile edge cloud, enabling technologies, such as SDN/NFV/ ICN, disruptive innovations, such as network coding, compressed sensing and machine learning, how to build a virtualized network infrastructure testbed on one's own computer, and more. - Provides a uniquely comprehensive overview on the individual building blocks that comprise the concept of computing in future networks - Gives practical hands-on activities to bridge theory and implementation - Includes software and examples that are not only employed throughout the book, but also hosted on a dedicated website