Graphical Simulation of Deformable Models
Title | Graphical Simulation of Deformable Models PDF eBook |
Author | Jianping Cai |
Publisher | Springer |
Pages | 120 |
Release | 2016-12-20 |
Genre | Computers |
ISBN | 3319510312 |
This book covers dynamic simulation of deformable objects, which is one of the most challenging tasks in computer graphics and visualization. It focuses on the simulation of deformable models with anisotropic materials, one of the less common approaches in the existing research. Both physically-based and geometrically-based approaches are examined. The authors start with transversely isotropic materials for the simulation of deformable objects with fibrous structures. Next, they introduce a fiber-field incorporated corotational finite element model (CLFEM) that works directly with a constitutive model of transversely isotropic material. A smooth fiber-field is used to establish the local frames for each element. To introduce deformation simulation for orthotropic materials, an orthotropic deformation controlling frame-field is conceptualized and a frame construction tool is developed for users to define the desired material properties. The orthotropic frame-field is coupled with the CLFEM model to complete an orthotropic deformable model. Finally, the authors present an integrated real-time system for animation of skeletal characters with anisotropic tissues. To solve the problems of volume distortion and high computational costs, a strain-based PBD framework for skeletal animation is explained; natural secondary motion of soft tissues is another benefit. The book is written for those researchers who would like to develop their own algorithms. The key mathematical and computational concepts are presented together with illustrations and working examples. It can also be used as a reference book for graduate students and senior undergraduates in the areas of computer graphics, computer animation, and virtual reality. Academics, researchers, and professionals will find this to be an exceptional resource.
Finite Element Method Simulation of 3D Deformable Solids
Title | Finite Element Method Simulation of 3D Deformable Solids PDF eBook |
Author | Eftychios Sifakis |
Publisher | Springer Nature |
Pages | 57 |
Release | 2022-06-01 |
Genre | Mathematics |
ISBN | 3031025857 |
This book serves as a practical guide to simulation of 3D deformable solids using the Finite Element Method (FEM). It reviews a number of topics related to the theory and implementation of FEM approaches: measures of deformation, constitutive laws of nonlinear materials, tetrahedral discretizations, and model reduction techniques for real-time simulation. Simulations of deformable solids are important in many applications in computer graphics, including film special effects, computer games, and virtual surgery. The Finite Element Method has become a popular tool in many such applications. Variants of FEM catering to both offline and real-time simulation have had a mature presence in computer graphics literature. This book is designed for readers familiar with numerical simulation in computer graphics, who would like to obtain a cohesive picture of the various FEM simulation methods available, their strengths and weaknesses, and their applicability in various simulation scenarios. The book is also a practical implementation guide for the visual effects developer, offering a lean yet adequate synopsis of the underlying mathematical theory. Chapter 1 introduces the quantitative descriptions used to capture the deformation of elastic solids, the concept of strain energy, and discusses how force and stress result as a response to deformation. Chapter 2 reviews a number of constitutive models, i.e., analytical laws linking deformation to the resulting force that has successfully been used in various graphics-oriented simulation tasks. Chapter 3 summarizes how deformation and force can be computed discretely on a tetrahedral mesh, and how an implicit integrator can be structured around this discretization. Finally, chapter 4 presents the state of the art in model reduction techniques for real-time FEM solid simulation and discusses which techniques are suitable for which applications. Topics discussed in this chapter include linear modal analysis, modal warping, subspace simulation, and domain decomposition.
Physically-Based Modeling for Computer Graphics
Title | Physically-Based Modeling for Computer Graphics PDF eBook |
Author | Ronen Barzel |
Publisher | Morgan Kaufmann |
Pages | 359 |
Release | 2013-10-22 |
Genre | Computers |
ISBN | 0080916449 |
Physically-Based Modeling for Computer Graphics: A Structured Approach addresses the challenge of designing and managing the complexity of physically-based models. This book will be of interest to researchers, computer graphics practitioners, mathematicians, engineers, animators, software developers and those interested in computer implementation and simulation of mathematical models. - Presents a philosophy and terminology for "Structured Modeling" - Includes mathematicl and programming techniques to support and implement the methodology - Covers a library of model components, including rigid-body kinematics, rigid-body dynamics, and force-based constraint methods - Includes illustrations of several ample models created from these components - Foreword by Al Barr
Computer Animation and Simulation 2001
Title | Computer Animation and Simulation 2001 PDF eBook |
Author | Nadia Magnenat-Thalmann |
Publisher | Springer Science & Business Media |
Pages | 205 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 3709162408 |
This volume contains the research papers presented at the 12th Eurographics Workshop on Computer Animation and Simulation, Manchester, UK, September 2-3, 2001. The workshop is an international forum for research in computer-animation and simulation. This year, we choose to give a special focus on the modelling and animation of complex phenomena. This includes the modelling of virtual creature- from their body-parts to the control of their behavior, and the animation of natural phenomena such as water, smoke, fire and vegetation. The call for papers required submission of the full papers for review, and each paper was reviewed by at least 2 members of the international program committee and additional reviewers. Based on the reviews, 16 papers were accepted. We added to the final program an invited talk by Jos Stam. We wish to thank all reviewers for their time and effort in working within the rigid constraints of the tight schedule, thereby making it possible to publish this volume in time for the workshop. We also thank the authors for their contributions to the workshop, without whom this unique forum for animation and simulation work would not exist.
Simulating Humans
Title | Simulating Humans PDF eBook |
Author | Norman I. Badler |
Publisher | Oxford University Press, USA |
Pages | 287 |
Release | 1993-09-02 |
Genre | Computers |
ISBN | 0195073592 |
The area of simulated human figures is an active research area in computer graphics, and Norman Badler's group at the University of Pennsylvania is one of the leaders in the field. This book summarizes the state of the art in simulating human figures, discusses many of the interesting application areas, and makes some assumptions and predictions about where the field is going.
Cloth Simulation for Computer Graphics
Title | Cloth Simulation for Computer Graphics PDF eBook |
Author | Tuur Stuyck |
Publisher | Morgan & Claypool Publishers |
Pages | 123 |
Release | 2018-08-24 |
Genre | Computers |
ISBN | 1681734125 |
Physics-based animation is commonplace in animated feature films and even special effects for live-action movies. Think about a recent movie and there will be some sort of special effects such as explosions or virtual worlds. Cloth simulation is no different and is ubiquitous because most virtual characters (hopefully!) wear some sort of clothing. The focus of this book is physics-based cloth simulation. We start by providing background information and discuss a range of applications. This book provides explanations of multiple cloth simulation techniques. More specifically, we start with the most simple explicitly integrated mass-spring model and gradually work our way up to more complex and commonly used implicitly integrated continuum techniques in state-of-the-art implementations. We give an intuitive explanation of the techniques and give additional information on how to efficiently implement them on a computer. This book discusses explicit and implicit integration schemes for cloth simulation modeled with mass-spring systems. In addition to this simple model, we explain the more advanced continuum-inspired cloth model introduced in the seminal work of Baraff and Witkin [1998]. This method is commonly used in industry. We also explain recent work by Liu et al. [2013] that provides a technique to obtain fast simulations. In addition to these simulation approaches, we discuss how cloth simulations can be art directed for stylized animations based on the work of Wojtan et al. [2006]. Controllability is an essential component of a feature animation film production pipeline. We conclude by pointing the reader to more advanced techniques.
Deformation Models
Title | Deformation Models PDF eBook |
Author | Manuel González Hidalgo |
Publisher | Springer Science & Business Media |
Pages | 301 |
Release | 2012-10-29 |
Genre | Computers |
ISBN | 9400754469 |
The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications. The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, such as those related with Computer Graphics, Computer Vision, Computer Imaging, Biomedicine, Bioengineering, Mathematics, Physics, Medical Imaging and Medicine.