Good Data
Title | Good Data PDF eBook |
Author | Angela Daly |
Publisher | Lulu.com |
Pages | 372 |
Release | 2019-01-23 |
Genre | Computers |
ISBN | 9492302284 |
Moving away from the strong body of critique of pervasive ?bad data? practices by both governments and private actors in the globalized digital economy, this book aims to paint an alternative, more optimistic but still pragmatic picture of the datafied future. The authors examine and propose ?good data? practices, values and principles from an interdisciplinary, international perspective. From ideas of data sovereignty and justice, to manifestos for change and calls for activism, this collection opens a multifaceted conversation on the kinds of futures we want to see, and presents concrete steps on how we can start realizing good data in practice.
Good Data
Title | Good Data PDF eBook |
Author | Sam Gilbert |
Publisher | |
Pages | 0 |
Release | 2022-02-17 |
Genre | Computers |
ISBN | 9781787396333 |
A rethink of everything you thought you knew about data, privacy and the future of Big Tech. Good Data examines the incredible new ways this information explosion is already helping us, and explains why the best is yet to come.
Creating Good Data
Title | Creating Good Data PDF eBook |
Author | Harry Foxwell |
Publisher | Apress |
Pages | 240 |
Release | 2020-10-28 |
Genre | Computers |
ISBN | 9781484261026 |
Create good data from the start, rather than fixing it after it is collected. By following the guidelines in this book, you will be able to conduct more effective analyses and produce timely presentations of research data. Data analysts are often presented with datasets for exploration and study that are poorly designed, leading to difficulties in interpretation and to delays in producing meaningful results. Much data analytics training focuses on how to clean and transform datasets before serious analyses can even be started. Inappropriate or confusing representations, unit of measurement choices, coding errors, missing values, outliers, etc., can be avoided by using good dataset design and by understanding how data types determine the kinds of analyses which can be performed. This book discusses the principles and best practices of dataset creation, and covers basic data types and their related appropriate statistics and visualizations. A key focus of the book is why certain data types are chosen for representing concepts and measurements, in contrast to the typical discussions of how to analyze a specific data type once it has been selected. What You Will Learn Be aware of the principles of creating and collecting data Know the basic data types and representations Select data types, anticipating analysis goals Understand dataset structures and practices for analyzing and sharing Be guided by examples and use cases (good and bad) Use cleaning tools and methods to create good data Who This Book Is For Researchers who design studies and collect data and subsequently conduct and report the results of their analyses can use the best practices in this book to produce better descriptions and interpretations of their work. In addition, data analysts who explore and explain data of other researchers will be able to create better datasets.
Storytelling with Data
Title | Storytelling with Data PDF eBook |
Author | Cole Nussbaumer Knaflic |
Publisher | John Wiley & Sons |
Pages | 284 |
Release | 2015-10-09 |
Genre | Mathematics |
ISBN | 1119002265 |
Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!
Privacy, Big Data, and the Public Good
Title | Privacy, Big Data, and the Public Good PDF eBook |
Author | Julia Lane |
Publisher | Cambridge University Press |
Pages | 343 |
Release | 2014-06-09 |
Genre | Mathematics |
ISBN | 1316094456 |
Massive amounts of data on human beings can now be analyzed. Pragmatic purposes abound, including selling goods and services, winning political campaigns, and identifying possible terrorists. Yet 'big data' can also be harnessed to serve the public good: scientists can use big data to do research that improves the lives of human beings, improves government services, and reduces taxpayer costs. In order to achieve this goal, researchers must have access to this data - raising important privacy questions. What are the ethical and legal requirements? What are the rules of engagement? What are the best ways to provide access while also protecting confidentiality? Are there reasonable mechanisms to compensate citizens for privacy loss? The goal of this book is to answer some of these questions. The book's authors paint an intellectual landscape that includes legal, economic, and statistical frameworks. The authors also identify new practical approaches that simultaneously maximize the utility of data access while minimizing information risk.
Learning from Good and Bad Data
Title | Learning from Good and Bad Data PDF eBook |
Author | Philip D. Laird |
Publisher | Springer Science & Business Media |
Pages | 223 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 1461316855 |
This monograph is a contribution to the study of the identification problem: the problem of identifying an item from a known class us ing positive and negative examples. This problem is considered to be an important component of the process of inductive learning, and as such has been studied extensively. In the overview we shall explain the objectives of this work and its place in the overall fabric of learning research. Context. Learning occurs in many forms; the only form we are treat ing here is inductive learning, roughly characterized as the process of forming general concepts from specific examples. Computer Science has found three basic approaches to this problem: • Select a specific learning task, possibly part of a larger task, and construct a computer program to solve that task . • Study cognitive models of learning in humans and extrapolate from them general principles to explain learning behavior. Then construct machine programs to test and illustrate these models. xi Xll PREFACE • Formulate a mathematical theory to capture key features of the induction process. This work belongs to the third category. The various studies of learning utilize training examples (data) in different ways. The three principal ones are: • Similarity-based (or empirical) learning, in which a collection of examples is used to select an explanation from a class of possible rules.
Good Charts
Title | Good Charts PDF eBook |
Author | Scott Berinato |
Publisher | Harvard Business Review Press |
Pages | 842 |
Release | 2016-04-26 |
Genre | Business & Economics |
ISBN | 1633690717 |
Dataviz—the new language of business A good visualization can communicate the nature and potential impact of information and ideas more powerfully than any other form of communication. For a long time “dataviz” was left to specialists—data scientists and professional designers. No longer. A new generation of tools and massive amounts of available data make it easy for anyone to create visualizations that communicate ideas far more effectively than generic spreadsheet charts ever could. What’s more, building good charts is quickly becoming a need-to-have skill for managers. If you’re not doing it, other managers are, and they’re getting noticed for it and getting credit for contributing to your company’s success. In Good Charts, dataviz maven Scott Berinato provides an essential guide to how visualization works and how to use this new language to impress and persuade. Dataviz today is where spreadsheets and word processors were in the early 1980s—on the cusp of changing how we work. Berinato lays out a system for thinking visually and building better charts through a process of talking, sketching, and prototyping. This book is much more than a set of static rules for making visualizations. It taps into both well-established and cutting-edge research in visual perception and neuroscience, as well as the emerging field of visualization science, to explore why good charts (and bad ones) create “feelings behind our eyes.” Along the way, Berinato also includes many engaging vignettes of dataviz pros, illustrating the ideas in practice. Good Charts will help you turn plain, uninspiring charts that merely present information into smart, effective visualizations that powerfully convey ideas.