Global Differential Geometry

Global Differential Geometry
Title Global Differential Geometry PDF eBook
Author Christian Bär
Publisher Springer Science & Business Media
Pages 520
Release 2011-12-18
Genre Mathematics
ISBN 3642228429

Download Global Differential Geometry Book in PDF, Epub and Kindle

This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.

Global Analysis

Global Analysis
Title Global Analysis PDF eBook
Author Ilka Agricola
Publisher American Mathematical Soc.
Pages 362
Release 2002
Genre Mathematics
ISBN 0821829513

Download Global Analysis Book in PDF, Epub and Kindle

The final third of the book applies the mathematical ideas to important areas of physics: Hamiltonian mechanics, statistical mechanics, and electrodynamics." "There are many classroom-tested exercises and examples with excellent figures throughout. The book is ideal as a text for a first course in differential geometry, suitable for advanced undergraduates or graduate students in mathematics or physics."--BOOK JACKET.

Differential Geometry and Global Analysis

Differential Geometry and Global Analysis
Title Differential Geometry and Global Analysis PDF eBook
Author Bang-Yen Chen
Publisher American Mathematical Society
Pages 242
Release 2022-04-07
Genre Mathematics
ISBN 1470460157

Download Differential Geometry and Global Analysis Book in PDF, Epub and Kindle

This volume contains the proceedings of the AMS Special Session on Differential Geometry and Global Analysis, Honoring the Memory of Tadashi Nagano (1930–2017), held January 16, 2020, in Denver, Colorado. Tadashi Nagano was one of the great Japanese differential geometers, whose fundamental and seminal work still attracts much interest today. This volume is inspired by his work and his legacy and, while recalling historical results, presents recent developments in the geometry of symmetric spaces as well as generalizations of symmetric spaces; minimal surfaces and minimal submanifolds; totally geodesic submanifolds and their classification; Riemannian, affine, projective, and conformal connections; the $(M_{+}, M_{-})$ method and its applications; and maximal antipodal subsets. Additionally, the volume features recent achievements related to biharmonic and biconservative hypersurfaces in space forms, the geometry of Laplace operator on Riemannian manifolds, and Chen-Ricci inequalities for Riemannian maps, among other topics that could attract the interest of any scholar working in differential geometry and global analysis on manifolds.

The Convenient Setting of Global Analysis

The Convenient Setting of Global Analysis
Title The Convenient Setting of Global Analysis PDF eBook
Author Andreas Kriegl
Publisher American Mathematical Society
Pages 631
Release 2024-08-15
Genre Mathematics
ISBN 1470478935

Download The Convenient Setting of Global Analysis Book in PDF, Epub and Kindle

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.

Global Differential Geometry and Global Analysis

Global Differential Geometry and Global Analysis
Title Global Differential Geometry and Global Analysis PDF eBook
Author Dirk Ferus
Publisher Springer
Pages 289
Release 2006-11-14
Genre Mathematics
ISBN 354046445X

Download Global Differential Geometry and Global Analysis Book in PDF, Epub and Kindle

All papers appearing in this volume are original research articles and have not been published elsewhere. They meet the requirements that are necessary for publication in a good quality primary journal. E.Belchev, S.Hineva: On the minimal hypersurfaces of a locally symmetric manifold. -N.Blasic, N.Bokan, P.Gilkey: The spectral geometry of the Laplacian and the conformal Laplacian for manifolds with boundary. -J.Bolton, W.M.Oxbury, L.Vrancken, L.M. Woodward: Minimal immersions of RP2 into CPn. -W.Cieslak, A. Miernowski, W.Mozgawa: Isoptics of a strictly convex curve. -F.Dillen, L.Vrancken: Generalized Cayley surfaces. -A.Ferrandez, O.J.Garay, P.Lucas: On a certain class of conformally flat Euclidean hypersurfaces. -P.Gauduchon: Self-dual manifolds with non-negative Ricci operator. -B.Hajduk: On the obstruction group toexistence of Riemannian metrics of positive scalar curvature. -U.Hammenstaedt: Compact manifolds with 1/4-pinched negative curvature. -J.Jost, Xiaowei Peng: The geometry of moduli spaces of stable vector bundles over Riemannian surfaces. - O.Kowalski, F.Tricerri: A canonical connection for locally homogeneous Riemannian manifolds. -M.Kozlowski: Some improper affine spheres in A3. -R.Kusner: A maximum principle at infinity and the topology of complete embedded surfaces with constant mean curvature. -Anmin Li: Affine completeness and Euclidean completeness. -U.Lumiste: On submanifolds with parallel higher order fundamental form in Euclidean spaces. -A.Martinez, F.Milan: Convex affine surfaces with constant affine mean curvature. -M.Min-Oo, E.A.Ruh, P.Tondeur: Transversal curvature and tautness for Riemannian foliations. -S.Montiel, A.Ros: Schroedinger operators associated to a holomorphic map. -D.Motreanu: Generic existence of Morse functions on infinite dimensional Riemannian manifolds and applications. -B.Opozda: Some extensions of Radon's theorem.

Global Differential Geometry and Global Analysis

Global Differential Geometry and Global Analysis
Title Global Differential Geometry and Global Analysis PDF eBook
Author D. Ferus
Publisher Springer
Pages 312
Release 2006-11-15
Genre Mathematics
ISBN 3540384197

Download Global Differential Geometry and Global Analysis Book in PDF, Epub and Kindle

Global Calculus

Global Calculus
Title Global Calculus PDF eBook
Author S. Ramanan
Publisher American Mathematical Soc.
Pages 330
Release 2005
Genre Mathematics
ISBN 0821837028

Download Global Calculus Book in PDF, Epub and Kindle

The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.