Geometry, Particles, and Fields
Title | Geometry, Particles, and Fields PDF eBook |
Author | Bjoern Felsager |
Publisher | Springer Science & Business Media |
Pages | 682 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 1461206316 |
Geometry, Particles and Fields is a direct reprint of the first edition. From a review of the first edition: "The present volume is a welcome edition to the growing number of books that develop geometrical language and use it to describe new developments in particle physics...It provides clear treatment that is accessible to graduate students with a knowledge of advanced calculus and of classical physics...The second half of the book deals with the principles of differential geometry and its applications, with a mathematical machinery of very wide range. Here clear line drawings and illustrations supplement the multitude of mathematical definitions. This section, in its clarity and pedagogy, is reminiscent of Gravitation by Charles Misner, Kip Thorne and John Wheeler...Felsager gives a very clear presentation of the use of geometric methods in particle physics...For those who have resisted learning this new language, his book provides a very good introduction as well as physical motivation. The inclusion of numerous exercises, worked out, renders the book useful for independent study also. I hope this book will be followed by others from authors with equal flair to provide a readable excursion into the next step." PHYSICS TODAY Bjoern Felsager is a high school teacher in Copenhagen. Educated at the Niels Bohr Institute, he has taught at the Universities of Copenhagen and Odense.
Geometry, Particles, and Fields
Title | Geometry, Particles, and Fields PDF eBook |
Author | Bjoern Felsager |
Publisher | Springer Science & Business Media |
Pages | 686 |
Release | 1998-01-09 |
Genre | Science |
ISBN | 0387982671 |
Geometry, Particles and Fields is a direct reprint of the first edition. From a review of the first edition: "The present volume is a welcome edition to the growing number of books that develop geometrical language and use it to describe new developments in particle physics...It provides clear treatment that is accessible to graduate students with a knowledge of advanced calculus and of classical physics...The second half of the book deals with the principles of differential geometry and its applications, with a mathematical machinery of very wide range. Here clear line drawings and illustrations supplement the multitude of mathematical definitions. This section, in its clarity and pedagogy, is reminiscent of Gravitation by Charles Misner, Kip Thorne and John Wheeler...Felsager gives a very clear presentation of the use of geometric methods in particle physics...For those who have resisted learning this new language, his book provides a very good introduction as well as physical motivation. The inclusion of numerous exercises, worked out, renders the book useful for independent study also. I hope this book will be followed by others from authors with equal flair to provide a readable excursion into the next step." PHYSICS TODAY Bjoern Felsager is a high school teacher in Copenhagen. Educated at the Niels Bohr Institute, he has taught at the Universities of Copenhagen and Odense.
Geometry, Particles, and Fields
Title | Geometry, Particles, and Fields PDF eBook |
Author | Bjørn Felsager |
Publisher | |
Pages | 668 |
Release | 1981 |
Genre | Electromagnetism |
ISBN |
Teil 1: Basic properties of particles and fields. Teil 2: Basic principles and applications of differential geometry
Noncommutative Geometry and Particle Physics
Title | Noncommutative Geometry and Particle Physics PDF eBook |
Author | Walter D. van Suijlekom |
Publisher | Springer |
Pages | 246 |
Release | 2014-07-21 |
Genre | Science |
ISBN | 9401791627 |
This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.
Noncommutative Geometry and the Standard Model of Elementary Particle Physics
Title | Noncommutative Geometry and the Standard Model of Elementary Particle Physics PDF eBook |
Author | Florian Scheck |
Publisher | Springer Science & Business Media |
Pages | 352 |
Release | 2002-11-26 |
Genre | Science |
ISBN | 3540440712 |
The outcome of a close collaboration between mathematicians and mathematical physicists, these Lecture Notes present the foundations of A. Connes noncommutative geometry, as well as its applications in particular to the field of theoretical particle physics. The coherent and systematic approach makes this book useful for experienced researchers and postgraduate students alike.
Introduction to the Classical Theory of Particles and Fields
Title | Introduction to the Classical Theory of Particles and Fields PDF eBook |
Author | Boris Kosyakov |
Publisher | Springer Science & Business Media |
Pages | 486 |
Release | 2007-07-11 |
Genre | Science |
ISBN | 3540409343 |
This volume is intended as a systematic introduction to gauge field theory for advanced undergraduate and graduate students in high energy physics. The discussion is restricted to the classical (non-quantum) theory in Minkowski spacetime. Particular attention has been given to conceptual aspects of field theory, accurate definitions of basic physical notions, and thorough analysis of exact solutions to the equations of motion for interacting systems.
Noncommutative Geometry, Quantum Fields and Motives
Title | Noncommutative Geometry, Quantum Fields and Motives PDF eBook |
Author | Alain Connes |
Publisher | American Mathematical Soc. |
Pages | 810 |
Release | 2019-03-13 |
Genre | Mathematics |
ISBN | 1470450453 |
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.