Geometry of Pseudo-Finsler Submanifolds

Geometry of Pseudo-Finsler Submanifolds
Title Geometry of Pseudo-Finsler Submanifolds PDF eBook
Author Aurel Bejancu
Publisher Springer Science & Business Media
Pages 252
Release 2013-04-17
Genre Mathematics
ISBN 9401594171

Download Geometry of Pseudo-Finsler Submanifolds Book in PDF, Epub and Kindle

This book begins with a new approach to the geometry of pseudo-Finsler manifolds. It also discusses the geometry of pseudo-Finsler manifolds and presents a comparison between the induced and the intrinsic Finsler connections. The Cartan, Berwald, and Rund connections are all investigated. Included also is the study of totally geodesic and other special submanifolds such as curves, surfaces, and hypersurfaces. Audience: The book will be of interest to researchers working on pseudo-Finsler geometry in general, and on pseudo-Finsler submanifolds in particular.

Minimal Submanifolds In Pseudo-riemannian Geometry

Minimal Submanifolds In Pseudo-riemannian Geometry
Title Minimal Submanifolds In Pseudo-riemannian Geometry PDF eBook
Author Henri Anciaux
Publisher World Scientific
Pages 184
Release 2010-11-02
Genre Mathematics
ISBN 981446614X

Download Minimal Submanifolds In Pseudo-riemannian Geometry Book in PDF, Epub and Kindle

Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case.For the first time, this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-Kähler manifolds are given.

Complex Spaces in Finsler, Lagrange and Hamilton Geometries

Complex Spaces in Finsler, Lagrange and Hamilton Geometries
Title Complex Spaces in Finsler, Lagrange and Hamilton Geometries PDF eBook
Author Gheorghe Munteanu
Publisher Springer Science & Business Media
Pages 237
Release 2012-11-03
Genre Mathematics
ISBN 1402022069

Download Complex Spaces in Finsler, Lagrange and Hamilton Geometries Book in PDF, Epub and Kindle

From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970's by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.

The Geometry of Higher-Order Hamilton Spaces

The Geometry of Higher-Order Hamilton Spaces
Title The Geometry of Higher-Order Hamilton Spaces PDF eBook
Author R. Miron
Publisher Springer Science & Business Media
Pages 257
Release 2012-12-06
Genre Mathematics
ISBN 9401000700

Download The Geometry of Higher-Order Hamilton Spaces Book in PDF, Epub and Kindle

This book is the first to present an overview of higher-order Hamilton geometry with applications to higher-order Hamiltonian mechanics. It is a direct continuation of the book The Geometry of Hamilton and Lagrange Spaces, (Kluwer Academic Publishers, 2001). It contains the general theory of higher order Hamilton spaces H(k)n, k>=1, semisprays, the canonical nonlinear connection, the N-linear metrical connection and their structure equations, and the Riemannian almost contact metrical model of these spaces. In addition, the volume also describes new developments such as variational principles for higher order Hamiltonians; Hamilton-Jacobi equations; higher order energies and law of conservation; Noether symmetries; Hamilton subspaces of order k and their fundamental equations. The duality, via Legendre transformation, between Hamilton spaces of order k and Lagrange spaces of the same order is pointed out. Also, the geometry of Cartan spaces of order k =1 is investigated in detail. This theory is useful in the construction of geometrical models in theoretical physics, mechanics, dynamical systems, optimal control, biology, economy etc.

Handbook of Finsler geometry. 2 (2003)

Handbook of Finsler geometry. 2 (2003)
Title Handbook of Finsler geometry. 2 (2003) PDF eBook
Author Peter L. Antonelli
Publisher Springer Science & Business Media
Pages 746
Release 2003
Genre Mathematics
ISBN 9781402015564

Download Handbook of Finsler geometry. 2 (2003) Book in PDF, Epub and Kindle

There are several mathematical approaches to Finsler Geometry, all of which are contained and expounded in this comprehensive Handbook. The principal bundles pathway to state-of-the-art Finsler Theory is here provided by M. Matsumoto. His is a cornerstone for this set of essays, as are the articles of R. Miron (Lagrange Geometry) and J. Szilasi (Spray and Finsler Geometry). After studying either one of these, the reader will be able to understand the included survey articles on complex manifolds, holonomy, sprays and KCC-theory, symplectic structures, Legendre duality, Hodge theory and Gauss-Bonnet formulas. Finslerian diffusion theory is presented by its founders, P. Antonelli and T. Zastawniak. To help with calculations and conceptualizations, a CD-ROM containing the software package FINSLER, based on MAPLE, is included with the book.

The Geometry of Hamilton and Lagrange Spaces

The Geometry of Hamilton and Lagrange Spaces
Title The Geometry of Hamilton and Lagrange Spaces PDF eBook
Author R. Miron
Publisher Springer Science & Business Media
Pages 355
Release 2006-04-11
Genre Mathematics
ISBN 0306471353

Download The Geometry of Hamilton and Lagrange Spaces Book in PDF, Epub and Kindle

The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in [76],[96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published [10], [18], [112], [113],... A large area of applicability of this geometry is suggested by the connections to Biology, Mechanics, and Physics and also by its general setting as a generalization of Finsler and Riemannian geometries. The concept of Hamilton space, introduced in [105], [101] was intensively studied in [63], [66], [97],... and it has been successful, as a geometric theory of the Ham- tonian function the fundamental entity in Mechanics and Physics. The classical Legendre’s duality makes possible a natural connection between Lagrange and - miltonspaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagrange spaces. Following this duality Cartan spaces introduced and studied in [98], [99],..., are, roughly speaking, the Legendre duals of certain Finsler spaces [98], [66], [67]. The above arguments make this monograph a continuation of [106], [113], emphasizing the Hamilton geometry.

The Diverse World of PDEs

The Diverse World of PDEs
Title The Diverse World of PDEs PDF eBook
Author I. S. Krasil′shchik
Publisher American Mathematical Society
Pages 250
Release 2023-08-21
Genre Mathematics
ISBN 1470471477

Download The Diverse World of PDEs Book in PDF, Epub and Kindle

This volume contains the proceedings of the Alexandre Vinogradov Memorial Conference on Diffieties, Cohomological Physics, and Other Animals, held from December 13–17, 2021, at the Independent University of Moscow and Moscow State University, Moscow, Russia. The papers are devoted to various interrelations of nonlinear PDEs with geometry and integrable systems. The topics discussed are: gravitational and electromagnetic fields in General Relativity, nonlocal geometry of PDEs, Legendre foliated cocycles on contact manifolds, presymplectic gauge PDEs and Lagrangian BV formalism, jet geometry and high-order phase transitions, bi-Hamiltonian structures of KdV type, bundles of Weyl structures, Lax representations via twisted extensions of Lie algebras, energy functionals and normal forms of knots, and differential invariants of inviscid flows. The companion volume (Contemporary Mathematics, Volume 789) is devoted to Algebraic and Cohomological Aspects of PDEs.