Introduction to Möbius Differential Geometry
Title | Introduction to Möbius Differential Geometry PDF eBook |
Author | Udo Hertrich-Jeromin |
Publisher | Cambridge University Press |
Pages | 436 |
Release | 2003-08-14 |
Genre | Mathematics |
ISBN | 9780521535694 |
This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere.
Geometry with an Introduction to Cosmic Topology
Title | Geometry with an Introduction to Cosmic Topology PDF eBook |
Author | Michael P. Hitchman |
Publisher | Jones & Bartlett Learning |
Pages | 255 |
Release | 2009 |
Genre | Mathematics |
ISBN | 0763754579 |
The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.
Geometry of Möbius Transformations
Title | Geometry of Möbius Transformations PDF eBook |
Author | Vladimir V. Kisil |
Publisher | World Scientific |
Pages | 207 |
Release | 2012 |
Genre | Mathematics |
ISBN | 1848168586 |
This book is a unique exposition of rich and inspiring geometries associated with Möbius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL2(R). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F Klein, who defined geometry as a study of invariants under a transitive group action.The treatment of elliptic, parabolic and hyperbolic Möbius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered.
Geometry of Complex Numbers
Title | Geometry of Complex Numbers PDF eBook |
Author | Hans Schwerdtfeger |
Publisher | Courier Corporation |
Pages | 228 |
Release | 2012-05-23 |
Genre | Mathematics |
ISBN | 0486135861 |
Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.
The Geometry of Discrete Groups
Title | The Geometry of Discrete Groups PDF eBook |
Author | Alan F. Beardon |
Publisher | Springer Science & Business Media |
Pages | 350 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461211468 |
This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.
Hyperbolic Geometry
Title | Hyperbolic Geometry PDF eBook |
Author | James W. Anderson |
Publisher | Springer Science & Business Media |
Pages | 239 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 1447139879 |
Thoroughly updated, featuring new material on important topics such as hyperbolic geometry in higher dimensions and generalizations of hyperbolicity Includes full solutions for all exercises Successful first edition sold over 800 copies in North America
Computational Conformal Geometry
Title | Computational Conformal Geometry PDF eBook |
Author | Xianfeng David Gu |
Publisher | |
Pages | 324 |
Release | 2008 |
Genre | CD-ROMs |
ISBN |