Integrability, Quantization, and Geometry: I. Integrable Systems
Title | Integrability, Quantization, and Geometry: I. Integrable Systems PDF eBook |
Author | Sergey Novikov |
Publisher | American Mathematical Soc. |
Pages | 516 |
Release | 2021-04-12 |
Genre | Education |
ISBN | 1470455919 |
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
Mathematical Reviews
Title | Mathematical Reviews PDF eBook |
Author | |
Publisher | |
Pages | 1296 |
Release | 2003 |
Genre | Mathematics |
ISBN |
Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry
Title | Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry PDF eBook |
Author | Sergey Novikov |
Publisher | American Mathematical Soc. |
Pages | 480 |
Release | 2021-04-12 |
Genre | Education |
ISBN | 1470455927 |
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
Topics in Contemporary Differential Geometry, Complex Analysis and Mathematical Physics
Title | Topics in Contemporary Differential Geometry, Complex Analysis and Mathematical Physics PDF eBook |
Author | Stancho Dimiev |
Publisher | World Scientific |
Pages | 350 |
Release | 2007 |
Genre | Mathematics |
ISBN | 9812707905 |
This volume contains the contributions by the participants in the eight of a series workshops in complex analysis, differential geometry and mathematical physics and related areas.Active specialists in mathematical physics contribute to the volume, providing not only significant information for researchers in the area but also interesting mathematics for non-specialists and a broader audience. The contributions treat topics including differential geometry, partial differential equations, integrable systems and mathematical physics.
Geometry, Topology and Quantization
Title | Geometry, Topology and Quantization PDF eBook |
Author | P. Bandyopadhyay |
Publisher | Springer Science & Business Media |
Pages | 236 |
Release | 2013-03-07 |
Genre | Science |
ISBN | 9401154260 |
This is a monograph on geometrical and topological features which arise in various quantization procedures. Quantization schemes consider the feasibility of arriving at a quantum system from a classical one and these involve three major procedures viz. i) geometric quantization, ii) Klauder quantization, and iii) stochastic quanti zation. In geometric quantization we have to incorporate a hermitian line bundle to effectively generate the quantum Hamiltonian operator from a classical Hamil tonian. Klauder quantization also takes into account the role of the connection one-form along with coordinate independence. In stochastic quantization as pro posed by Nelson, Schrodinger equation is derived from Brownian motion processes; however, we have difficulty in its relativistic generalization. It has been pointed out by several authors that this may be circumvented by formulating a new geometry where Brownian motion proceses are considered in external as well as in internal space and, when the complexified space-time is considered, the usual path integral formulation is achieved. When this internal space variable is considered as a direc tion vector introducing an anisotropy in the internal space, we have the quantization of a Fermi field. This helps us to formulate a stochastic phase space formalism when the internal extension can be treated as a gauge theoretic extension. This suggests that massive fermions may be considered as Skyrme solitons. The nonrelativistic quantum mechanics is achieved in the sharp point limit.
Integrable Systems and Algebraic Geometry: Volume 1
Title | Integrable Systems and Algebraic Geometry: Volume 1 PDF eBook |
Author | Ron Donagi |
Publisher | Cambridge University Press |
Pages | 421 |
Release | 2020-04-02 |
Genre | Mathematics |
ISBN | 110880358X |
Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. This first volume covers a wide range of areas related to integrable systems, often emphasizing the deep connections with algebraic geometry. Common themes include theta functions and Abelian varieties, Lax equations, integrable hierarchies, Hamiltonian flows and difference operators. These powerful tools are applied to spinning top, Hitchin, Painleve and many other notable special equations.
Nonlinear Waves and Solitons on Contours and Closed Surfaces
Title | Nonlinear Waves and Solitons on Contours and Closed Surfaces PDF eBook |
Author | Andrei Ludu |
Publisher | Springer Nature |
Pages | 583 |
Release | 2022-11-04 |
Genre | Science |
ISBN | 3031146417 |
This new edition has been thoroughly revised, expanded and contain some updates function of the novel results and shift of scientific interest in the topics. The book has a Foreword by Jerry L. Bona and Hongqiu Chen. The book is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems. The first part of the book introduces the mathematical concept required for treating the manifolds considered, providing relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given. The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics. This book is intended for graduate students and researchers in mathematics, physics and engineering.