Geometry and Discrete Mathematics
Title | Geometry and Discrete Mathematics PDF eBook |
Author | Benjamin Fine |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 364 |
Release | 2022-08-22 |
Genre | Mathematics |
ISBN | 3110740788 |
Fundamentals of mathematics are presented in the two-volume set in an exciting and pedagogically sound way. The present volume examines the most important basic results in geometry and discrete mathematics, along with their proofs, and also their history. New: A chapter on discrete Morse theory and still more graph theory for solving further classical problems as the Travelling Salesman and Postman problem.
Classical Topics in Discrete Geometry
Title | Classical Topics in Discrete Geometry PDF eBook |
Author | Károly Bezdek |
Publisher | Springer Science & Business Media |
Pages | 171 |
Release | 2010-06-23 |
Genre | Mathematics |
ISBN | 1441906002 |
Geometry is a classical core part of mathematics which, with its birth, marked the beginning of the mathematical sciences. Thus, not surprisingly, geometry has played a key role in many important developments of mathematics in the past, as well as in present times. While focusing on modern mathematics, one has to emphasize the increasing role of discrete mathematics, or equivalently, the broad movement to establish discrete analogues of major components of mathematics. In this way, the works of a number of outstanding mathema- cians including H. S. M. Coxeter (Canada), C. A. Rogers (United Kingdom), and L. Fejes-T oth (Hungary) led to the new and fast developing eld called discrete geometry. One can brie y describe this branch of geometry as the study of discrete arrangements of geometric objects in Euclidean, as well as in non-Euclidean spaces. This, as a classical core part, also includes the theory of polytopes and tilings in addition to the theory of packing and covering. D- crete geometry is driven by problems often featuring a very clear visual and applied character. The solutions use a variety of methods of modern mat- matics, including convex and combinatorial geometry, coding theory, calculus of variations, di erential geometry, group theory, and topology, as well as geometric analysis and number theory.
The Geometry of Discrete Groups
Title | The Geometry of Discrete Groups PDF eBook |
Author | Alan F. Beardon |
Publisher | Springer Science & Business Media |
Pages | 350 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461211468 |
This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.
Research Problems in Discrete Geometry
Title | Research Problems in Discrete Geometry PDF eBook |
Author | Peter Brass |
Publisher | Springer Science & Business Media |
Pages | 507 |
Release | 2006-01-27 |
Genre | Mathematics |
ISBN | 0387299297 |
This book is the result of a 25-year-old project and comprises a collection of more than 500 attractive open problems in the field. The largely self-contained chapters provide a broad overview of discrete geometry, along with historical details and the most important partial results related to these problems. This book is intended as a source book for both professional mathematicians and graduate students who love beautiful mathematical questions, are willing to spend sleepless nights thinking about them, and who would like to get involved in mathematical research.
Lectures on Discrete Geometry
Title | Lectures on Discrete Geometry PDF eBook |
Author | Ji?í Matoušek |
Publisher | Springer |
Pages | 486 |
Release | 2002-05-02 |
Genre | Mathematics |
ISBN | 9780387953748 |
The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.
Volumetric Discrete Geometry
Title | Volumetric Discrete Geometry PDF eBook |
Author | Karoly Bezdek |
Publisher | CRC Press |
Pages | 210 |
Release | 2019-04-24 |
Genre | Mathematics |
ISBN | 1000007162 |
Volume of geometric objects plays an important role in applied and theoretical mathematics. This is particularly true in the relatively new branch of discrete geometry, where volume is often used to find new topics for research. Volumetric Discrete Geometry demonstrates the recent aspects of volume, introduces problems related to it, and presents methods to apply it to other geometric problems. Part I of the text consists of survey chapters of selected topics on volume and is suitable for advanced undergraduate students. Part II has chapters of selected proofs of theorems stated in Part I and is oriented for graduate level students wishing to learn about the latest research on the topic. Chapters can be studied independently from each other. Provides a list of 30 open problems to promote research Features more than 60 research exercises Ideally suited for researchers and students of combinatorics, geometry and discrete mathematics
Convex and Discrete Geometry
Title | Convex and Discrete Geometry PDF eBook |
Author | Peter M. Gruber |
Publisher | Springer Science & Business Media |
Pages | 590 |
Release | 2007-05-17 |
Genre | Mathematics |
ISBN | 3540711333 |
Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other subdisciplines. This book provides a comprehensive overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers, and useful to people working in the applied fields.