Geometry and Complexity Theory
Title | Geometry and Complexity Theory PDF eBook |
Author | J. M. Landsberg |
Publisher | Cambridge University Press |
Pages | 353 |
Release | 2017-09-28 |
Genre | Computers |
ISBN | 110819141X |
Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.
Algebraic Complexity Theory
Title | Algebraic Complexity Theory PDF eBook |
Author | Peter Bürgisser |
Publisher | Springer Science & Business Media |
Pages | 630 |
Release | 2013-03-14 |
Genre | Mathematics |
ISBN | 3662033380 |
The algorithmic solution of problems has always been one of the major concerns of mathematics. For a long time such solutions were based on an intuitive notion of algorithm. It is only in this century that metamathematical problems have led to the intensive search for a precise and sufficiently general formalization of the notions of computability and algorithm. In the 1930s, a number of quite different concepts for this purpose were pro posed, such as Turing machines, WHILE-programs, recursive functions, Markov algorithms, and Thue systems. All these concepts turned out to be equivalent, a fact summarized in Church's thesis, which says that the resulting definitions form an adequate formalization of the intuitive notion of computability. This had and continues to have an enormous effect. First of all, with these notions it has been possible to prove that various problems are algorithmically unsolvable. Among of group these undecidable problems are the halting problem, the word problem theory, the Post correspondence problem, and Hilbert's tenth problem. Secondly, concepts like Turing machines and WHILE-programs had a strong influence on the development of the first computers and programming languages. In the era of digital computers, the question of finding efficient solutions to algorithmically solvable problems has become increasingly important. In addition, the fact that some problems can be solved very efficiently, while others seem to defy all attempts to find an efficient solution, has called for a deeper under standing of the intrinsic computational difficulty of problems.
Geometry and Complexity Theory
Title | Geometry and Complexity Theory PDF eBook |
Author | J. M. Landsberg |
Publisher | Cambridge University Press |
Pages | 353 |
Release | 2017-09-28 |
Genre | Computers |
ISBN | 1107199239 |
This comprehensive introduction to algebraic complexity theory presents new techniques for analyzing P vs NP and matrix multiplication.
Computational Complexity
Title | Computational Complexity PDF eBook |
Author | Sanjeev Arora |
Publisher | Cambridge University Press |
Pages | 609 |
Release | 2009-04-20 |
Genre | Computers |
ISBN | 0521424267 |
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Complexity and Real Computation
Title | Complexity and Real Computation PDF eBook |
Author | Lenore Blum |
Publisher | Springer Science & Business Media |
Pages | 456 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 1461207010 |
The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing. Along the way, the authors consider such fundamental problems as: * Is the Mandelbrot set decidable? * For simple quadratic maps, is the Julia set a halting set? * What is the real complexity of Newton's method? * Is there an algorithm for deciding the knapsack problem in a ploynomial number of steps? * Is the Hilbert Nullstellensatz intractable? * Is the problem of locating a real zero of a degree four polynomial intractable? * Is linear programming tractable over the reals? The book is divided into three parts: The first part provides an extensive introduction and then proves the fundamental NP-completeness theorems of Cook-Karp and their extensions to more general number fields as the real and complex numbers. The later parts of the book develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing.
Fractal Geometry, Complex Dimensions and Zeta Functions
Title | Fractal Geometry, Complex Dimensions and Zeta Functions PDF eBook |
Author | Michel L. Lapidus |
Publisher | Springer Science & Business Media |
Pages | 583 |
Release | 2012-09-20 |
Genre | Mathematics |
ISBN | 1461421764 |
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.
Complexity Theory and Project Management
Title | Complexity Theory and Project Management PDF eBook |
Author | Wanda Curlee |
Publisher | John Wiley & Sons |
Pages | 470 |
Release | 2010-10-01 |
Genre | Technology & Engineering |
ISBN | 0470769742 |
An insightful view on how to use the power of complexity theory to manage projects more successfully Current management practices require adherence to rigid, global responses unsuitable for addressing the changing needs of most projects. Complexity Theory and Project Management shifts this paradigm to create opportunities for expanding the decision-making process in ways that promote flexibility—and increase effectiveness. It informs readers on the managerial challenges of juggling project requirements, and offers them a clear roadmap on how to revise perspectives and reassess priorities to excel despite having an unpredictable workflow. One of the first books covering the subject of complexity theory for project management, this useful guide: Explains the relationship of complexity theory to virtual project management Supplies techniques, tips, and suggestions for building effective and successful teams in the virtual environment Presents current information about best practices and relevant proactive tools Makes a strong case for including complexity theory in PMI®'s PMBOK® Guide Complexity Theory and Project Management gives a firsthand view on the future of complexity theory as a driving force in the management field, and allows project managers to get a head start in applying its principles immediately to produce more favorable outcomes. (PMI and PMBOK are registered marks of the Project Management Institute, Inc.)