Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations
Title Geometrical Methods in the Theory of Ordinary Differential Equations PDF eBook
Author V.I. Arnold
Publisher Springer Science & Business Media
Pages 366
Release 2012-12-06
Genre Mathematics
ISBN 1461210372

Download Geometrical Methods in the Theory of Ordinary Differential Equations Book in PDF, Epub and Kindle

Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.

Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations
Title Geometrical Methods in the Theory of Ordinary Differential Equations PDF eBook
Author V.I. Arnold
Publisher Springer
Pages 351
Release 1997-01-01
Genre Mathematics
ISBN 0387966498

Download Geometrical Methods in the Theory of Ordinary Differential Equations Book in PDF, Epub and Kindle

Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.

Geometric Numerical Integration

Geometric Numerical Integration
Title Geometric Numerical Integration PDF eBook
Author Ernst Hairer
Publisher Springer Science & Business Media
Pages 526
Release 2013-03-09
Genre Mathematics
ISBN 3662050188

Download Geometric Numerical Integration Book in PDF, Epub and Kindle

This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.

Geometry in Partial Differential Equations

Geometry in Partial Differential Equations
Title Geometry in Partial Differential Equations PDF eBook
Author Agostino Prastaro
Publisher World Scientific
Pages 482
Release 1994
Genre Mathematics
ISBN 9789810214074

Download Geometry in Partial Differential Equations Book in PDF, Epub and Kindle

This book emphasizes the interdisciplinary interaction in problems involving geometry and partial differential equations. It provides an attempt to follow certain threads that interconnect various approaches in the geometric applications and influence of partial differential equations. A few such approaches include: Morse-Palais-Smale theory in global variational calculus, general methods to obtain conservation laws for PDEs, structural investigation for the understanding of the meaning of quantum geometry in PDEs, extensions to super PDEs (formulated in the category of supermanifolds) of the geometrical methods just introduced for PDEs and the harmonic theory which proved to be very important especially after the appearance of the Atiyah-Singer index theorem, which provides a link between geometry and topology.

Geometric Methods in Algebra and Number Theory

Geometric Methods in Algebra and Number Theory
Title Geometric Methods in Algebra and Number Theory PDF eBook
Author Fedor Bogomolov
Publisher Springer Science & Business Media
Pages 365
Release 2006-06-22
Genre Mathematics
ISBN 0817644172

Download Geometric Methods in Algebra and Number Theory Book in PDF, Epub and Kindle

* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry

Control Theory from the Geometric Viewpoint

Control Theory from the Geometric Viewpoint
Title Control Theory from the Geometric Viewpoint PDF eBook
Author Andrei A. Agrachev
Publisher Springer Science & Business Media
Pages 440
Release 2004-04-15
Genre Language Arts & Disciplines
ISBN 9783540210191

Download Control Theory from the Geometric Viewpoint Book in PDF, Epub and Kindle

This book presents some facts and methods of Mathematical Control Theory treated from the geometric viewpoint. It is devoted to finite-dimensional deterministic control systems governed by smooth ordinary differential equations. The problems of controllability, state and feedback equivalence, and optimal control are studied. Some of the topics treated by the authors are covered in monographic or textbook literature for the first time while others are presented in a more general and flexible setting than elsewhere. Although being fundamentally written for mathematicians, the authors make an attempt to reach both the practitioner and the theoretician by blending the theory with applications. They maintain a good balance between the mathematical integrity of the text and the conceptual simplicity that might be required by engineers. It can be used as a text for graduate courses and will become most valuable as a reference work for graduate students and researchers.

Topological Methods for Differential Equations and Inclusions

Topological Methods for Differential Equations and Inclusions
Title Topological Methods for Differential Equations and Inclusions PDF eBook
Author John R. Graef
Publisher CRC Press
Pages 375
Release 2018-09-25
Genre Mathematics
ISBN 0429822626

Download Topological Methods for Differential Equations and Inclusions Book in PDF, Epub and Kindle

Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.