Algebraic L-theory and Topological Manifolds

Algebraic L-theory and Topological Manifolds
Title Algebraic L-theory and Topological Manifolds PDF eBook
Author Andrew Ranicki
Publisher Cambridge University Press
Pages 372
Release 1992-12-10
Genre Mathematics
ISBN 9780521420242

Download Algebraic L-theory and Topological Manifolds Book in PDF, Epub and Kindle

Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.

Piecewise Linear Structures On Topological Manifolds

Piecewise Linear Structures On Topological Manifolds
Title Piecewise Linear Structures On Topological Manifolds PDF eBook
Author Yuli Rudyak
Publisher World Scientific
Pages 129
Release 2015-12-28
Genre Mathematics
ISBN 9814733806

Download Piecewise Linear Structures On Topological Manifolds Book in PDF, Epub and Kindle

The study of triangulations of topological spaces has always been at the root of geometric topology. Among the most studied triangulations are piecewise linear triangulations of high-dimensional topological manifolds. Their study culminated in the late 1960s-early 1970s in a complete classification in the work of Kirby and Siebenmann. It is this classification that we discuss in this book, including the celebrated Hauptvermutung and Triangulation Conjecture.The goal of this book is to provide a readable and well-organized exposition of the subject, which would be suitable for advanced graduate students in topology. An exposition like this is currently lacking.

From Differential Geometry to Non-commutative Geometry and Topology

From Differential Geometry to Non-commutative Geometry and Topology
Title From Differential Geometry to Non-commutative Geometry and Topology PDF eBook
Author Neculai S. Teleman
Publisher Springer Nature
Pages 406
Release 2019-11-10
Genre Mathematics
ISBN 3030284336

Download From Differential Geometry to Non-commutative Geometry and Topology Book in PDF, Epub and Kindle

This book aims to provide a friendly introduction to non-commutative geometry. It studies index theory from a classical differential geometry perspective up to the point where classical differential geometry methods become insufficient. It then presents non-commutative geometry as a natural continuation of classical differential geometry. It thereby aims to provide a natural link between classical differential geometry and non-commutative geometry. The book shows that the index formula is a topological statement, and ends with non-commutative topology.

Handbook of Geometric Topology

Handbook of Geometric Topology
Title Handbook of Geometric Topology PDF eBook
Author R.B. Sher
Publisher Elsevier
Pages 1145
Release 2001-12-20
Genre Mathematics
ISBN 0080532853

Download Handbook of Geometric Topology Book in PDF, Epub and Kindle

Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.

Algebraic and Geometric Topology, Part 2

Algebraic and Geometric Topology, Part 2
Title Algebraic and Geometric Topology, Part 2 PDF eBook
Author R. James Milgram
Publisher American Mathematical Soc.
Pages 330
Release 1978
Genre Mathematics
ISBN 0821814338

Download Algebraic and Geometric Topology, Part 2 Book in PDF, Epub and Kindle

Contains sections on Structure of topological manifolds, Low dimensional manifolds, Geometry of differential manifolds and algebraic varieties, $H$-spaces, loop spaces and $CW$ complexes, Problems.

Geometric and Topological Inference

Geometric and Topological Inference
Title Geometric and Topological Inference PDF eBook
Author Jean-Daniel Boissonnat
Publisher Cambridge University Press
Pages 247
Release 2018-09-27
Genre Computers
ISBN 1108419399

Download Geometric and Topological Inference Book in PDF, Epub and Kindle

A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science.

Geometry and Topology of Manifolds: Surfaces and Beyond

Geometry and Topology of Manifolds: Surfaces and Beyond
Title Geometry and Topology of Manifolds: Surfaces and Beyond PDF eBook
Author Vicente Muñoz
Publisher American Mathematical Soc.
Pages 408
Release 2020-10-21
Genre Education
ISBN 1470461323

Download Geometry and Topology of Manifolds: Surfaces and Beyond Book in PDF, Epub and Kindle

This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.