Geometric Wave Equations
Title | Geometric Wave Equations PDF eBook |
Author | Jalal M. Ihsan Shatah |
Publisher | American Mathematical Soc. |
Pages | 154 |
Release | 2000 |
Genre | Mathematics |
ISBN | 0821827499 |
This volume contains notes of the lectures given at the Courant Institute and a DMV-Seminar at Oberwolfach. The focus is on the recent work of the authors on semilinear wave equations with critical Sobolev exponents and on wave maps in two space dimensions. Background material and references have been added to make the notes self-contained. The book is suitable for use in a graduate-level course on the topic. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Geometric Analysis of Hyperbolic Differential Equations: An Introduction
Title | Geometric Analysis of Hyperbolic Differential Equations: An Introduction PDF eBook |
Author | S. Alinhac |
Publisher | Cambridge University Press |
Pages | |
Release | 2010-05-20 |
Genre | Mathematics |
ISBN | 1139485814 |
Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.
Partial Differential Equations arising from Physics and Geometry
Title | Partial Differential Equations arising from Physics and Geometry PDF eBook |
Author | Mohamed Ben Ayed |
Publisher | Cambridge University Press |
Pages | 471 |
Release | 2019-05-02 |
Genre | Mathematics |
ISBN | 1108431631 |
Presents the state of the art in PDEs, including the latest research and short courses accessible to graduate students.
Hyperbolic Partial Differential Equations and Geometric Optics
Title | Hyperbolic Partial Differential Equations and Geometric Optics PDF eBook |
Author | Jeffrey Rauch |
Publisher | American Mathematical Soc. |
Pages | 386 |
Release | 2012-05-01 |
Genre | Mathematics |
ISBN | 0821872915 |
This book introduces graduate students and researchers in mathematics and the sciences to the multifaceted subject of the equations of hyperbolic type, which are used, in particular, to describe propagation of waves at finite speed. Among the topics carefully presented in the book are nonlinear geometric optics, the asymptotic analysis of short wavelength solutions, and nonlinear interaction of such waves. Studied in detail are the damping of waves, resonance, dispersive decay, and solutions to the compressible Euler equations with dense oscillations created by resonant interactions. Many fundamental results are presented for the first time in a textbook format. In addition to dense oscillations, these include the treatment of precise speed of propagation and the existence and stability questions for the three wave interaction equations. One of the strengths of this book is its careful motivation of ideas and proofs, showing how they evolve from related, simpler cases. This makes the book quite useful to both researchers and graduate students interested in hyperbolic partial differential equations. Numerous exercises encourage active participation of the reader. The author is a professor of mathematics at the University of Michigan. A recognized expert in partial differential equations, he has made important contributions to the transformation of three areas of hyperbolic partial differential equations: nonlinear microlocal analysis, the control of waves, and nonlinear geometric optics.
Mathematics of Wave Propagation
Title | Mathematics of Wave Propagation PDF eBook |
Author | Julian L. Davis |
Publisher | Princeton University Press |
Pages | 411 |
Release | 2021-01-12 |
Genre | Mathematics |
ISBN | 0691223378 |
Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves.
Finite Difference Computing with PDEs
Title | Finite Difference Computing with PDEs PDF eBook |
Author | Hans Petter Langtangen |
Publisher | Springer |
Pages | 522 |
Release | 2017-06-21 |
Genre | Computers |
ISBN | 3319554565 |
This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Exploring physics with Geometric Algebra
Title | Exploring physics with Geometric Algebra PDF eBook |
Author | Peeter Joot |
Publisher | Peeter Joot |
Pages | 1106 |
Release | |
Genre | Science |
ISBN |
This is an exploratory collection of notes containing worked examples of a number of applications of Geometric Algebra (GA), also known as Clifford Algebra. This writing is focused on undergraduate level physics concepts, with a target audience of somebody with an undergraduate engineering background (i.e. me at the time of writing.) These notes are more journal than book. You'll find lots of duplication, since I reworked some topics from scratch a number of times. In many places I was attempting to learn both the basic physics concepts as well as playing with how to express many of those concepts using GA formalisms. The page count proves that I did a very poor job of weeding out all the duplication. These notes are (dis)organized into the following chapters * Basics and Geometry. This chapter covers a hodge-podge collection of topics, including GA forms for traditional vector identities, Quaterions, Cauchy equations, Legendre polynomials, wedge product representation of a plane, bivector and trivector geometry, torque and more. A couple attempts at producing an introduction to GA concepts are included (none of which I was ever happy with.) * Projection. Here the concept of reciprocal frame vectors, using GA and traditional matrix formalisms is developed. Projection, rejection and Moore-Penrose (generalized inverse) operations are discussed. * Rotation. GA Rotors, Euler angles, spherical coordinates, blade exponentials, rotation generators, and infinitesimal rotations are all examined from a GA point of view. * Calculus. Here GA equivalents for a number of vector calculus relations are developed, spherical and hyperspherical volume parameterizations are derived, some questions about the structure of divergence and curl are examined, and tangent planes and normals in 3 and 4 dimensions are examined. Wrapping up this chapter is a complete GA formulation of the general Stokes theorem for curvilinear coordinates in Euclidean or non-Euclidean spaces is developed. * General Physics. This chapter introduces a bivector form of angular momentum (instead of a cross product), examines the components of radial velocity and acceleration, kinetic energy, symplectic structure, Newton's method, and a center of mass problem for a toroidal segment. * Relativity. This is a fairly incoherent chapter, including an attempt to develop the Lorentz transformation by requiring wave equation invariance, Lorentz transformation of the four-vector (STA) gradient, and a look at the relativistic doppler equation. * Electrodynamics. The GA formulation of Maxwell's equation (singular in GA) is developed here. Various basic topics of electrodynamics are examined using the GA toolbox, including the Biot-Savart law, the covariant form for Maxwell's equation (Space Time Algebra, or STA), four vectors and potentials, gauge invariance, TEM waves, and some Lienard-Wiechert problems. * Lorentz Force. Here the GA form of the Lorentz force equation and its relation to the usual vectorial representation is explored. This includes some application of boosts to the force equation to examine how it transforms under observe dependent conditions. * Electrodynamic stress energy. This chapter explores concepts of electrodynamic energy and momentum density and the GA representation of the Poynting vector and the stress-energy tensors. * Quantum Mechanics. This chapter includes a look at the Dirac Lagrangian, and how this can be cast into GA form. Properties of the Pauli and Dirac bases are explored, and how various matrix operations map onto their GA equivalents. A bivector form for the angular momentum operator is examined. A multivector form for the first few spherical harmonic eigenfunctions is developed. A multivector factorization of the three and four dimensional Laplacian and the angular momentum operators are derived. * Fourier treatments. Solutions to various PDE equations are attempted using Fourier series and transforms. Much of this chapter was exploring Fourier solutions to the GA form of Maxwell's equation, but a few other non-geometric algebra Fourier problems were also tackled.