Geometric Theory of Discrete Nonautonomous Dynamical Systems
Title | Geometric Theory of Discrete Nonautonomous Dynamical Systems PDF eBook |
Author | Christian Pötzsche |
Publisher | Springer Science & Business Media |
Pages | 422 |
Release | 2010-09-17 |
Genre | Mathematics |
ISBN | 3642142575 |
The goal of this book is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes).
An Introduction To Nonautonomous Dynamical Systems And Their Attractors
Title | An Introduction To Nonautonomous Dynamical Systems And Their Attractors PDF eBook |
Author | Peter Kloeden |
Publisher | World Scientific |
Pages | 157 |
Release | 2020-11-25 |
Genre | Mathematics |
ISBN | 9811228671 |
The nature of time in a nonautonomous dynamical system is very different from that in autonomous systems, which depend only on the time that has elapsed since starting rather than on the actual time itself. Consequently, limiting objects may not exist in actual time as in autonomous systems. New concepts of attractors in nonautonomous dynamical system are thus required.In addition, the definition of a dynamical system itself needs to be generalised to the nonautonomous context. Here two possibilities are considered: two-parameter semigroups or processes and the skew product flows. Their attractors are defined in terms of families of sets that are mapped onto each other under the dynamics rather than a single set as in autonomous systems. Two types of attraction are now possible: pullback attraction, which depends on the behaviour from the system in the distant past, and forward attraction, which depends on the behaviour of the system in the distant future. These are generally independent of each other.The component subsets of pullback and forward attractors exist in actual time. The asymptotic behaviour in the future limit is characterised by omega-limit sets, in terms of which form what are called forward attracting sets. They are generally not invariant in the conventional sense, but are asymptotically invariant in general and, if the future dynamics is appropriately uniform, also asymptotically negatively invariant.Much of this book is based on lectures given by the authors in Frankfurt and Wuhan. It was written mainly when the first author held a 'Thousand Expert' Professorship at the Huazhong University of Science and Technology in Wuhan.
Attractors for infinite-dimensional non-autonomous dynamical systems
Title | Attractors for infinite-dimensional non-autonomous dynamical systems PDF eBook |
Author | Alexandre Carvalho |
Publisher | Springer Science & Business Media |
Pages | 434 |
Release | 2012-09-26 |
Genre | Mathematics |
ISBN | 1461445809 |
The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.
Difference Equations, Discrete Dynamical Systems and Applications
Title | Difference Equations, Discrete Dynamical Systems and Applications PDF eBook |
Author | Martin Bohner |
Publisher | Springer |
Pages | 201 |
Release | 2015-12-01 |
Genre | Mathematics |
ISBN | 3319247476 |
These proceedings of the 20th International Conference on Difference Equations and Applications cover the areas of difference equations, discrete dynamical systems, fractal geometry, difference equations and biomedical models, and discrete models in the natural sciences, social sciences and engineering. The conference was held at the Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (Hubei, China), under the auspices of the International Society of Difference Equations (ISDE) in July 2014. Its purpose was to bring together renowned researchers working actively in the respective fields, to discuss the latest developments, and to promote international cooperation on the theory and applications of difference equations. This book will appeal to researchers and scientists working in the fields of difference equations, discrete dynamical systems and their applications.
Positive Dynamical Systems in Discrete Time
Title | Positive Dynamical Systems in Discrete Time PDF eBook |
Author | Ulrich Krause |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 429 |
Release | 2015-11-27 |
Genre | Mathematics |
ISBN | 3110391341 |
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a system are nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences. "The author has greatly expanded the field of positive systems in surprising ways." - Prof. Dr. David G. Luenberger, Stanford University(USA)
Nonautonomous Dynamical Systems
Title | Nonautonomous Dynamical Systems PDF eBook |
Author | Peter E. Kloeden |
Publisher | American Mathematical Soc. |
Pages | 274 |
Release | 2011-08-17 |
Genre | Mathematics |
ISBN | 0821868713 |
The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.
Nonautonomous Bifurcation Theory
Title | Nonautonomous Bifurcation Theory PDF eBook |
Author | Vasso Anagnostopoulou |
Publisher | Springer Nature |
Pages | 159 |
Release | 2023-05-31 |
Genre | Mathematics |
ISBN | 303129842X |
Bifurcation theory is a major topic in dynamical systems theory with profound applications. However, in contrast to autonomous dynamical systems, it is not clear what a bifurcation of a nonautonomous dynamical system actually is, and so far, various different approaches to describe qualitative changes have been suggested in the literature. The aim of this book is to provide a concise survey of the area and equip the reader with suitable tools to tackle nonautonomous problems. A review, discussion and comparison of several concepts of bifurcation is provided, and these are formulated in a unified notation and illustrated by means of comprehensible examples. Additionally, certain relevant tools needed in a corresponding analysis are presented.