Geometric Theorems, Diophantine Equations, and Arithmetic Functions
Title | Geometric Theorems, Diophantine Equations, and Arithmetic Functions PDF eBook |
Author | J. Sándor |
Publisher | Infinite Study |
Pages | 302 |
Release | 2002 |
Genre | Arithmetic functions |
ISBN | 1931233519 |
Diophantine Geometry
Title | Diophantine Geometry PDF eBook |
Author | Marc Hindry |
Publisher | Springer Science & Business Media |
Pages | 574 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 1461212103 |
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Geometric Theorems and Arithmetic Functions
Title | Geometric Theorems and Arithmetic Functions PDF eBook |
Author | József Sándor |
Publisher | Infinite Study |
Pages | 55 |
Release | 2002 |
Genre | Mathematics |
ISBN | 1931233470 |
Number Theory and Geometry: An Introduction to Arithmetic Geometry
Title | Number Theory and Geometry: An Introduction to Arithmetic Geometry PDF eBook |
Author | Álvaro Lozano-Robledo |
Publisher | American Mathematical Soc. |
Pages | 506 |
Release | 2019-03-21 |
Genre | Mathematics |
ISBN | 147045016X |
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
Handbook of Number Theory I
Title | Handbook of Number Theory I PDF eBook |
Author | József Sándor |
Publisher | Springer Science & Business Media |
Pages | 638 |
Release | 2005-11-17 |
Genre | Mathematics |
ISBN | 1402042159 |
This handbook covers a wealth of topics from number theory, special attention being given to estimates and inequalities. As a rule, the most important results are presented, together with their refinements, extensions or generalisations. These may be applied to other aspects of number theory, or to a wide range of mathematical disciplines. Cross-references provide new insight into fundamental research. Audience: This is an indispensable reference work for specialists in number theory and other mathematicians who need access to some of these results in their own fields of research.
An Introduction to Diophantine Equations
Title | An Introduction to Diophantine Equations PDF eBook |
Author | Titu Andreescu |
Publisher | Springer Science & Business Media |
Pages | 350 |
Release | 2010-09-02 |
Genre | Mathematics |
ISBN | 0817645497 |
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Encyclopaedia of Mathematics
Title | Encyclopaedia of Mathematics PDF eBook |
Author | Michiel Hazewinkel |
Publisher | Springer Science & Business Media |
Pages | 743 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 9400903650 |
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.