Geometric Analysis and Nonlinear Partial Differential Equations

Geometric Analysis and Nonlinear Partial Differential Equations
Title Geometric Analysis and Nonlinear Partial Differential Equations PDF eBook
Author Stefan Hildebrandt
Publisher Springer Science & Business Media
Pages 663
Release 2012-12-06
Genre Mathematics
ISBN 3642556272

Download Geometric Analysis and Nonlinear Partial Differential Equations Book in PDF, Epub and Kindle

This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.

Elementary Topics in Differential Geometry

Elementary Topics in Differential Geometry
Title Elementary Topics in Differential Geometry PDF eBook
Author J. A. Thorpe
Publisher Springer Science & Business Media
Pages 263
Release 2012-12-06
Genre Mathematics
ISBN 1461261538

Download Elementary Topics in Differential Geometry Book in PDF, Epub and Kindle

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.

Selected Topics in the Geometrical Study of Differential Equations

Selected Topics in the Geometrical Study of Differential Equations
Title Selected Topics in the Geometrical Study of Differential Equations PDF eBook
Author
Publisher American Mathematical Soc.
Pages 135
Release
Genre
ISBN 0821826395

Download Selected Topics in the Geometrical Study of Differential Equations Book in PDF, Epub and Kindle

A Course in Differential Geometry and Lie Groups

A Course in Differential Geometry and Lie Groups
Title A Course in Differential Geometry and Lie Groups PDF eBook
Author S. Kumaresan
Publisher Springer
Pages 306
Release 2002-01-15
Genre Mathematics
ISBN 9386279088

Download A Course in Differential Geometry and Lie Groups Book in PDF, Epub and Kindle

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos
Title Nonlinear Dynamics and Chaos PDF eBook
Author Steven H. Strogatz
Publisher CRC Press
Pages 532
Release 2018-05-04
Genre Mathematics
ISBN 0429961111

Download Nonlinear Dynamics and Chaos Book in PDF, Epub and Kindle

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

A Geometric Approach to Differential Forms

A Geometric Approach to Differential Forms
Title A Geometric Approach to Differential Forms PDF eBook
Author David Bachman
Publisher Springer Science & Business Media
Pages 167
Release 2012-02-02
Genre Mathematics
ISBN 0817683046

Download A Geometric Approach to Differential Forms Book in PDF, Epub and Kindle

This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.

Topics in Extrinsic Geometry of Codimension-One Foliations

Topics in Extrinsic Geometry of Codimension-One Foliations
Title Topics in Extrinsic Geometry of Codimension-One Foliations PDF eBook
Author Vladimir Rovenski
Publisher Springer Science & Business Media
Pages 129
Release 2011-07-26
Genre Mathematics
ISBN 1441999086

Download Topics in Extrinsic Geometry of Codimension-One Foliations Book in PDF, Epub and Kindle

Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results. The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator. The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves. This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.