Geometric Data Analysis

Geometric Data Analysis
Title Geometric Data Analysis PDF eBook
Author Brigitte Le Roux
Publisher Springer Science & Business Media
Pages 496
Release 2004-06-29
Genre Mathematics
ISBN 9781402022357

Download Geometric Data Analysis Book in PDF, Epub and Kindle

Geometric Data Analysis (GDA) is the name suggested by P. Suppes (Stanford University) to designate the approach to Multivariate Statistics initiated by Benzécri as Correspondence Analysis, an approach that has become more and more used and appreciated over the years. This book presents the full formalization of GDA in terms of linear algebra - the most original and far-reaching consequential feature of the approach - and shows also how to integrate the standard statistical tools such as Analysis of Variance, including Bayesian methods. Chapter 9, Research Case Studies, is nearly a book in itself; it presents the methodology in action on three extensive applications, one for medicine, one from political science, and one from education (data borrowed from the Stanford computer-based Educational Program for Gifted Youth ). Thus the readership of the book concerns both mathematicians interested in the applications of mathematics, and researchers willing to master an exceptionally powerful approach of statistical data analysis.

Geometric Data Analysis

Geometric Data Analysis
Title Geometric Data Analysis PDF eBook
Author Michael Kirby
Publisher Wiley-Interscience
Pages 0
Release 2001-01-12
Genre Computers
ISBN 9780471239291

Download Geometric Data Analysis Book in PDF, Epub and Kindle

This book addresses the most efficient methods of pattern analysis using wavelet decomposition. Readers will learn to analyze data in order to emphasize the differences between closely related patterns and then categorize them in a way that is useful to system users.

Riemannian Geometric Statistics in Medical Image Analysis

Riemannian Geometric Statistics in Medical Image Analysis
Title Riemannian Geometric Statistics in Medical Image Analysis PDF eBook
Author Xavier Pennec
Publisher Academic Press
Pages 636
Release 2019-09-02
Genre Computers
ISBN 0128147261

Download Riemannian Geometric Statistics in Medical Image Analysis Book in PDF, Epub and Kindle

Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: - The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs - Applications of statistics on manifolds and shape spaces in medical image computing - Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science. - A complete reference covering both the foundations and state-of-the-art methods - Edited and authored by leading researchers in the field - Contains theory, examples, applications, and algorithms - Gives an overview of current research challenges and future applications

Geometric Data Analysis

Geometric Data Analysis
Title Geometric Data Analysis PDF eBook
Author Brigitte Le Roux
Publisher Springer Science & Business Media
Pages 484
Release 2006-01-16
Genre Mathematics
ISBN 1402022360

Download Geometric Data Analysis Book in PDF, Epub and Kindle

Geometric Data Analysis (GDA) is the name suggested by P. Suppes (Stanford University) to designate the approach to Multivariate Statistics initiated by Benzécri as Correspondence Analysis, an approach that has become more and more used and appreciated over the years. This book presents the full formalization of GDA in terms of linear algebra - the most original and far-reaching consequential feature of the approach - and shows also how to integrate the standard statistical tools such as Analysis of Variance, including Bayesian methods. Chapter 9, Research Case Studies, is nearly a book in itself; it presents the methodology in action on three extensive applications, one for medicine, one from political science, and one from education (data borrowed from the Stanford computer-based Educational Program for Gifted Youth ). Thus the readership of the book concerns both mathematicians interested in the applications of mathematics, and researchers willing to master an exceptionally powerful approach of statistical data analysis.

Computational Topology for Data Analysis

Computational Topology for Data Analysis
Title Computational Topology for Data Analysis PDF eBook
Author Tamal Krishna Dey
Publisher Cambridge University Press
Pages 456
Release 2022-03-10
Genre Mathematics
ISBN 1009103199

Download Computational Topology for Data Analysis Book in PDF, Epub and Kindle

Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.

Mathematical Foundations for Data Analysis

Mathematical Foundations for Data Analysis
Title Mathematical Foundations for Data Analysis PDF eBook
Author Jeff M. Phillips
Publisher Springer Nature
Pages 299
Release 2021-03-29
Genre Mathematics
ISBN 3030623416

Download Mathematical Foundations for Data Analysis Book in PDF, Epub and Kindle

This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.

Quantifying Theory: Pierre Bourdieu

Quantifying Theory: Pierre Bourdieu
Title Quantifying Theory: Pierre Bourdieu PDF eBook
Author Karen Robson
Publisher Springer Science & Business Media
Pages 235
Release 2009-01-21
Genre Social Science
ISBN 1402094507

Download Quantifying Theory: Pierre Bourdieu Book in PDF, Epub and Kindle

Pierre Bourdieu’s contributions to the theory and practice of social research are far reaching. Possibly the most prominent sociologist in recent times, his work has touched on a myriad of topics and has influenced scholars in multiple disciplines. Throughout Bourdieu’s work, emphasis is placed on the linkage between the practice of social research and its relationship to social theory. This book honours Bourdieu’s commitment to the inextricable relationship between social theory and research in social science. In this volume, authors from all over the world utilize key concepts coined by Bourdieu, specifically his concept of capitals, habitus, and the field, and attempt to test them using quantitative survey data. The focus of this volume is how researchers can take key elements of Bourdieu’s work and apply them to the analysis of quantitative data on a variety of topics. Throughout the volume, issues of the possible interpretations of concepts and measurement validity are focused upon in a language that can be appreciated by new and experienced researchers alike. This volume is useful for courses where the linkage between theory and research is emphasized, at both the upper undergraduate and general postgraduate level. In addition to serving as a teaching tool, the articles within the volume will be invaluable to any scholar interested in working with Bourdieu’s concepts in quantitative research.