Cohomology Operations and Applications in Homotopy Theory

Cohomology Operations and Applications in Homotopy Theory
Title Cohomology Operations and Applications in Homotopy Theory PDF eBook
Author Robert E. Mosher
Publisher Courier Corporation
Pages 226
Release 2008-01-01
Genre Mathematics
ISBN 0486466647

Download Cohomology Operations and Applications in Homotopy Theory Book in PDF, Epub and Kindle

Cohomology operations are at the center of a major area of activity in algebraic topology. This treatment explores the single most important variety of operations, the Steenrod squares. It constructs these operations, proves their major properties, and provides numerous applications, including several different techniques of homotopy theory useful for computation. 1968 edition.

Geometric Applications of Homotopy Theory I

Geometric Applications of Homotopy Theory I
Title Geometric Applications of Homotopy Theory I PDF eBook
Author M. G. Barratt
Publisher Springer
Pages 470
Release 2006-11-15
Genre Mathematics
ISBN 3540358099

Download Geometric Applications of Homotopy Theory I Book in PDF, Epub and Kindle

Geometric Applications of Homotopy Theory II

Geometric Applications of Homotopy Theory II
Title Geometric Applications of Homotopy Theory II PDF eBook
Author M.G. Barratt
Publisher Springer
Pages 498
Release 2006-11-15
Genre Mathematics
ISBN 3540358080

Download Geometric Applications of Homotopy Theory II Book in PDF, Epub and Kindle

Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects

Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects
Title Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects PDF eBook
Author Frank Neumann
Publisher Springer Nature
Pages 223
Release 2021-09-29
Genre Mathematics
ISBN 3030789772

Download Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects Book in PDF, Epub and Kindle

This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.

Applications of Algebraic Topology

Applications of Algebraic Topology
Title Applications of Algebraic Topology PDF eBook
Author S. Lefschetz
Publisher Springer Science & Business Media
Pages 190
Release 2012-12-06
Genre Mathematics
ISBN 1468493671

Download Applications of Algebraic Topology Book in PDF, Epub and Kindle

This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.

Abstract Homotopy And Simple Homotopy Theory

Abstract Homotopy And Simple Homotopy Theory
Title Abstract Homotopy And Simple Homotopy Theory PDF eBook
Author K Heiner Kamps
Publisher World Scientific
Pages 476
Release 1997-04-11
Genre Mathematics
ISBN 9814502553

Download Abstract Homotopy And Simple Homotopy Theory Book in PDF, Epub and Kindle

The abstract homotopy theory is based on the observation that analogues of much of the topological homotopy theory and simple homotopy theory exist in many other categories (e.g. spaces over a fixed base, groupoids, chain complexes, module categories). Studying categorical versions of homotopy structure, such as cylinders and path space constructions, enables not only a unified development of many examples of known homotopy theories but also reveals the inner working of the classical spatial theory. This demonstrates the logical interdependence of properties (in particular the existence of certain Kan fillers in associated cubical sets) and results (Puppe sequences, Vogt's Iemma, Dold's theorem on fibre homotopy equivalences, and homotopy coherence theory).

Handbook of Homotopy Theory

Handbook of Homotopy Theory
Title Handbook of Homotopy Theory PDF eBook
Author Haynes Miller
Publisher CRC Press
Pages 1142
Release 2020-01-23
Genre Mathematics
ISBN 1351251600

Download Handbook of Homotopy Theory Book in PDF, Epub and Kindle

The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.