Elements of Classical and Quantum Integrable Systems

Elements of Classical and Quantum Integrable Systems
Title Elements of Classical and Quantum Integrable Systems PDF eBook
Author Gleb Arutyunov
Publisher Springer
Pages 420
Release 2019-07-23
Genre Science
ISBN 303024198X

Download Elements of Classical and Quantum Integrable Systems Book in PDF, Epub and Kindle

Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.

Integrability, Quantization, and Geometry: I. Integrable Systems

Integrability, Quantization, and Geometry: I. Integrable Systems
Title Integrability, Quantization, and Geometry: I. Integrable Systems PDF eBook
Author Sergey Novikov
Publisher American Mathematical Soc.
Pages 516
Release 2021-04-12
Genre Education
ISBN 1470455919

Download Integrability, Quantization, and Geometry: I. Integrable Systems Book in PDF, Epub and Kindle

This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Algebraic and Geometric Aspects of Integrable Systems and Random Matrices

Algebraic and Geometric Aspects of Integrable Systems and Random Matrices
Title Algebraic and Geometric Aspects of Integrable Systems and Random Matrices PDF eBook
Author Anton Dzhamay
Publisher American Mathematical Soc.
Pages 363
Release 2013-06-26
Genre Mathematics
ISBN 0821887475

Download Algebraic and Geometric Aspects of Integrable Systems and Random Matrices Book in PDF, Epub and Kindle

This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, held from January 6-7, 2012, in Boston, MA. The very wide range of topics represented in this volume illustrates

From Quantum Cohomology to Integrable Systems

From Quantum Cohomology to Integrable Systems
Title From Quantum Cohomology to Integrable Systems PDF eBook
Author Martin A. Guest
Publisher OUP Oxford
Pages 336
Release 2008-03-13
Genre Mathematics
ISBN 0191606960

Download From Quantum Cohomology to Integrable Systems Book in PDF, Epub and Kindle

Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.

Asymptotic, Algebraic and Geometric Aspects of Integrable Systems

Asymptotic, Algebraic and Geometric Aspects of Integrable Systems
Title Asymptotic, Algebraic and Geometric Aspects of Integrable Systems PDF eBook
Author Frank Nijhoff
Publisher Springer Nature
Pages 240
Release 2020-10-23
Genre Mathematics
ISBN 3030570002

Download Asymptotic, Algebraic and Geometric Aspects of Integrable Systems Book in PDF, Epub and Kindle

This proceedings volume gathers together selected works from the 2018 “Asymptotic, Algebraic and Geometric Aspects of Integrable Systems” workshop that was held at TSIMF Yau Mathematical Sciences Center in Sanya, China, honoring Nalini Joshi on her 60th birthday. The papers cover recent advances in asymptotic, algebraic and geometric methods in the study of discrete integrable systems. The workshop brought together experts from fields such as asymptotic analysis, representation theory and geometry, creating a platform to exchange current methods, results and novel ideas. This volume's articles reflect these exchanges and can be of special interest to a diverse group of researchers and graduate students interested in learning about current results, new approaches and trends in mathematical physics, in particular those relevant to discrete integrable systems.

Seiberg-Witten Theory and Integrable Systems

Seiberg-Witten Theory and Integrable Systems
Title Seiberg-Witten Theory and Integrable Systems PDF eBook
Author Andrei Marshakov
Publisher World Scientific
Pages 268
Release 1999
Genre Science
ISBN 9789810236366

Download Seiberg-Witten Theory and Integrable Systems Book in PDF, Epub and Kindle

In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics ? systems of integrable nonlinear differential equations and their algebro-geometric solutions.First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain.Several ?toy-model? examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories.Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory.

Geometric and Quantum Aspects of Integrable Systems

Geometric and Quantum Aspects of Integrable Systems
Title Geometric and Quantum Aspects of Integrable Systems PDF eBook
Author G. F. Helminck
Publisher
Pages 240
Release 2014-01-15
Genre
ISBN 9783662139295

Download Geometric and Quantum Aspects of Integrable Systems Book in PDF, Epub and Kindle