Geometric and Ergodic Aspects of Group Actions
Title | Geometric and Ergodic Aspects of Group Actions PDF eBook |
Author | S. G. Dani |
Publisher | Springer Nature |
Pages | 176 |
Release | 2020-01-13 |
Genre | Mathematics |
ISBN | 9811506833 |
This book gathers papers on recent advances in the ergodic theory of group actions on homogeneous spaces and on geometrically finite hyperbolic manifolds presented at the workshop “Geometric and Ergodic Aspects of Group Actions,” organized by the Tata Institute of Fundamental Research, Mumbai, India, in 2018. Written by eminent scientists, and providing clear, detailed accounts of various topics at the interface of ergodic theory, the theory of homogeneous dynamics, and the geometry of hyperbolic surfaces, the book is a valuable resource for researchers and advanced graduate students in mathematics.
Group Actions in Ergodic Theory, Geometry, and Topology
Title | Group Actions in Ergodic Theory, Geometry, and Topology PDF eBook |
Author | Robert J. Zimmer |
Publisher | University of Chicago Press |
Pages | 724 |
Release | 2019-12-23 |
Genre | Mathematics |
ISBN | 022656827X |
Robert J. Zimmer is best known in mathematics for the highly influential conjectures and program that bear his name. Group Actions in Ergodic Theory, Geometry, and Topology: Selected Papers brings together some of the most significant writings by Zimmer, which lay out his program and contextualize his work over the course of his career. Zimmer’s body of work is remarkable in that it involves methods from a variety of mathematical disciplines, such as Lie theory, differential geometry, ergodic theory and dynamical systems, arithmetic groups, and topology, and at the same time offers a unifying perspective. After arriving at the University of Chicago in 1977, Zimmer extended his earlier research on ergodic group actions to prove his cocycle superrigidity theorem which proved to be a pivotal point in articulating and developing his program. Zimmer’s ideas opened the door to many others, and they continue to be actively employed in many domains related to group actions in ergodic theory, geometry, and topology. In addition to the selected papers themselves, this volume opens with a foreword by David Fisher, Alexander Lubotzky, and Gregory Margulis, as well as a substantial introductory essay by Zimmer recounting the course of his career in mathematics. The volume closes with an afterword by Fisher on the most recent developments around the Zimmer program.
Geometry, Rigidity, and Group Actions
Title | Geometry, Rigidity, and Group Actions PDF eBook |
Author | Robert J. Zimmer |
Publisher | University of Chicago Press |
Pages | 659 |
Release | 2011-04-15 |
Genre | Mathematics |
ISBN | 0226237893 |
The study of group actions is more than 100 years old but remains a widely studied topic in a variety of mathematic fields. A central development in the last 50 years is the phenomenon of rigidity, whereby one can classify actions of certain groups. This book looks at rigidity.
Flexibility of Group Actions on the Circle
Title | Flexibility of Group Actions on the Circle PDF eBook |
Author | Sang-hyun Kim |
Publisher | Springer |
Pages | 140 |
Release | 2019-01-02 |
Genre | Mathematics |
ISBN | 3030028550 |
In this partly expository work, a framework is developed for building exotic circle actions of certain classical groups. The authors give general combination theorems for indiscrete isometry groups of hyperbolic space which apply to Fuchsian and limit groups. An abundance of integer-valued subadditive defect-one quasimorphisms on these groups follow as a corollary. The main classes of groups considered are limit and Fuchsian groups. Limit groups are shown to admit large collections of faithful actions on the circle with disjoint rotation spectra. For Fuchsian groups, further flexibility results are proved and the existence of non-geometric actions of free and surface groups is established. An account is given of the extant notions of semi-conjugacy, showing they are equivalent. This book is suitable for experts interested in flexibility of representations, and for non-experts wanting an introduction to group representations into circle homeomorphism groups.
Geometry and Dynamics of Groups and Spaces
Title | Geometry and Dynamics of Groups and Spaces PDF eBook |
Author | Mikhail Kapranov |
Publisher | Springer Science & Business Media |
Pages | 759 |
Release | 2008-03-05 |
Genre | Mathematics |
ISBN | 3764386088 |
Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.
Discrete Subgroups of Semisimple Lie Groups
Title | Discrete Subgroups of Semisimple Lie Groups PDF eBook |
Author | Gregori A. Margulis |
Publisher | Springer Science & Business Media |
Pages | 408 |
Release | 1991-02-15 |
Genre | Mathematics |
ISBN | 9783540121794 |
Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.
Handbook of Group Actions
Title | Handbook of Group Actions PDF eBook |
Author | Lizhen Ji |
Publisher | |
Pages | 602 |
Release | 2015 |
Genre | Group actions (Mathematics) |
ISBN | 9781571463005 |