Generation and Functional Characterization of Smooth Muscle Cells and Cardiomyocytes Derived from Embryonic Stem Cells

Generation and Functional Characterization of Smooth Muscle Cells and Cardiomyocytes Derived from Embryonic Stem Cells
Title Generation and Functional Characterization of Smooth Muscle Cells and Cardiomyocytes Derived from Embryonic Stem Cells PDF eBook
Author Shiva Rama Krishna Prasad Potta
Publisher
Pages 115
Release 2008
Genre
ISBN

Download Generation and Functional Characterization of Smooth Muscle Cells and Cardiomyocytes Derived from Embryonic Stem Cells Book in PDF, Epub and Kindle

Functional Characterization of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells

Functional Characterization of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells
Title Functional Characterization of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells PDF eBook
Author Xiaowu Sheng
Publisher
Pages 61
Release 2012
Genre
ISBN

Download Functional Characterization of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells Book in PDF, Epub and Kindle

Pluripotent Stem-Cell Derived Cardiomyocytes

Pluripotent Stem-Cell Derived Cardiomyocytes
Title Pluripotent Stem-Cell Derived Cardiomyocytes PDF eBook
Author Yoshinori Yoshida
Publisher Humana
Pages 304
Release 2022-08-08
Genre Science
ISBN 9781071614860

Download Pluripotent Stem-Cell Derived Cardiomyocytes Book in PDF, Epub and Kindle

This volume provides methodologies for ES and iPS cell technology on the study of cardiovascular diseases. Chapters guide readers through protocols on cardiomyocyte generation from pluripotent stem cells, physiological measurements, bioinformatic analysis, gene editing technology, and cell transplantation studies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Pluripotent Stem-Cell Derived Cardiomyocytes aims to help researchers set up experiments using pluripotent stem cell-derived cardiac cells.

Functional Characterisation of Cardiomyocytes Derived from Mouse and Human Embryonic Stem Cells

Functional Characterisation of Cardiomyocytes Derived from Mouse and Human Embryonic Stem Cells
Title Functional Characterisation of Cardiomyocytes Derived from Mouse and Human Embryonic Stem Cells PDF eBook
Author Ebba Louise Lagerqvist
Publisher
Pages 478
Release 2011
Genre
ISBN

Download Functional Characterisation of Cardiomyocytes Derived from Mouse and Human Embryonic Stem Cells Book in PDF, Epub and Kindle

Embryonic stem cell-derived cardiomyocytes (ESC-CMs) have applications in understanding cardiac disease pathophysiology, pharmacology and toxicology. However, a comprehensive characterisation of their basic physiological and pharmacological properties is critical in determining their suitability as models of cardiac activity.Initially, video microscopy and motion analysis software were used to investigate the responses of mouse ESC-derived beating bodies (BBs) to isoprenaline (Iso) and the cardio-active peptides angiotensin II (Ang II) and endothelin-1 (ET-1). Whilst all of these agonists mediated changes in contraction amplitude, indicating the presence of functional ß-adrenoceptor, ETA, AT1 and AT2 receptors, the BBs could be divided on the basis of their contraction frequency responses to the peptide agonists, Ang II and ET-1. This indicated functional heterogeneity amongst the pacemaker cells within the differentiated CM population.An Nkx2.5-eGFP ESC reporter cell line was used to facilitate the isolation of pacemaker cells of the cardiac lineage through live single cell high acquisition rate calcium imaging. Multiple kinetically distinct, previously unreported intracellular Ca2+ ([Ca2+]i) waveforms were observed, most of which were markedly sensitive to reactive oxygen species generation during confocal imaging. By modifying the imaging medium to contain an anti-oxidant cocktail, the activities of six distinct [Ca2+]i waveforms were preserved. On the basis of their kinetics and immunocytochemical profiles, the single cells exhibiting these distinct [Ca2+]i waveforms could be crudely localised to specific regions of the secondary cardiac conduction system. Through investigation of [Ca2+]i handling mechanisms, as well as responsiveness to various cardio-active agonists, this study has demonstrated that automaticity in different spontaneously active Nkx2.5-eGFP+ pacemaker-like populations is governed by varying mechanisms and each population exhibits distinct agonist response profiles.Through collaboration with David Elliott at the Monash Immunology and Stem Cell Laboratories, the pharmacological modulation and [Ca2+]i handling properties of NKX2.5-GFP+ human ESC-BBs was investigated. Only a maximum of 60% of BBs responded to Iso, carbachol, Ang II and ET-1. Investigation of second messenger signalling activation indicated that this was due to ineffective receptor-second messenger coupling during early differentiation stages. Furthermore, confocal calcium imaging on sorted, spontaneously active NKX2.5-GFP+ hESC-cardiac cells indicated the presence of a single, homogeneous pacemaker-like population within these BBs. Unlike the mESC-derived cardiac system, the human BBs were differentiated using a defined exogenous growth factor induced approach which may have biased the differentiation of a particular cardiac conduction system cell type. The signalling cues required for the differentiation of these distinct cardiac subpopulations is under continued investigation.Due to the technical challenges of their investigation from in vivo sources, little is known regarding the function of secondary cardiac conduction system cells, particularly with respect to the mechanisms by which arrhythmias manifest themselves. The ability to isolate and characterise distinct populations of the cardiac conduction system is, therefore, highly clinically relevant. The results from this thesis provide strong support for the potential use of ESCs in conduction system disease modelling, as well as drug discovery and screening platforms.

Generation and Characterization of Human Embryonic Stem Cells-Derived Skeletal Muscle Progenitors

Generation and Characterization of Human Embryonic Stem Cells-Derived Skeletal Muscle Progenitors
Title Generation and Characterization of Human Embryonic Stem Cells-Derived Skeletal Muscle Progenitors PDF eBook
Author Michael L. Shelton
Publisher
Pages
Release 2018
Genre
ISBN

Download Generation and Characterization of Human Embryonic Stem Cells-Derived Skeletal Muscle Progenitors Book in PDF, Epub and Kindle

The long-term treatment of injured, aging, or pathological skeletal muscle using stem cell therapy requires an abundant source of skeletal muscle progenitors (SMP) that are capable of self-replenishment. While adult SMPs-known as satellite cells and marked by PAX7 expression-can be collected from healthy donors, these satellite cells have limited replication potential once extracted, and may have difficulties providing sufficient numbers for therapy. Therefore, we sought to utilize the near-unlimited replication potential of human embryonic stem cells (hESC) to generate large quantities of SMPs in vitro. We developed a 50-day directed hESC differentiation that produced cultures with up to 90% myogenic identity; roughly 43 ± 4% become PAX7+ SMPs, and 47 ± 3% of cells become skeletal myocytes. We also performed gene expression profiling on our differentiating cultures to better understand in vitro skeletal myogenesis, and to better characterize in vitro hESC-derived SMPs, which remain poorly understood relative to adult satellite cells. 50-day cultures shared gene expression profiles more similar to quiescent rather than activated satellite cells, featuring a number of genes related to FOS/JUN, NOTCH, and TGFB-signaling. Day 50 cultures also expressed surface proteins known to mark adult or embryonic SMPs: CD82, CXCR4, ERBB3, NGFR, and PDGFRA. Transplanting 50-day cultures into cardiotoxin or BaCl2 injured immunodeficient murine muscle showed donor human cells persisted within the host muscle for 1 - 2 months post-injection; however, donor cells were confined to the interstitial space and did not contribute to host myofibers or the satellite cell niche. Together, these studies provide a tool for generating large quantities of embryonic skeletal muscle, and a gene expression resource that can provide insight into signaling factors that might improve or accelerate SMP development, or provide putative new surface receptors that may isolate embryonic SMPs better suited for in vivo transplantation.

Differentiation of Embryonic Stem Cells

Differentiation of Embryonic Stem Cells
Title Differentiation of Embryonic Stem Cells PDF eBook
Author
Publisher Elsevier
Pages 577
Release 2003-12-18
Genre Science
ISBN 0080546161

Download Differentiation of Embryonic Stem Cells Book in PDF, Epub and Kindle

This volume covers all aspects of embryonic stem cell differentiation, including mouse embryonic stem cells, mouse embryonic germ cells, monkey and human embryonic stem cells, and gene discovery.* Early commitment steps and generation of chimeric mice* Differentiation to mesoderm derivatives* Gene discovery by manipulation of mouse embryonic stem cells

Stem Cells and the Future of Regenerative Medicine

Stem Cells and the Future of Regenerative Medicine
Title Stem Cells and the Future of Regenerative Medicine PDF eBook
Author Institute of Medicine
Publisher National Academies Press
Pages 112
Release 2002-01-25
Genre Science
ISBN 0309170427

Download Stem Cells and the Future of Regenerative Medicine Book in PDF, Epub and Kindle

Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.