Generating Whole Body Movements for Dynamics Anthropomorphic Systems Under Constraints

Generating Whole Body Movements for Dynamics Anthropomorphic Systems Under Constraints
Title Generating Whole Body Movements for Dynamics Anthropomorphic Systems Under Constraints PDF eBook
Author Layale Saab
Publisher
Pages 193
Release 2011
Genre
ISBN

Download Generating Whole Body Movements for Dynamics Anthropomorphic Systems Under Constraints Book in PDF, Epub and Kindle

This thesis studies the question of whole body motion generation for anthropomorphic systems. Within this work, the problem of modeling and control is considered by addressing the difficult issue of generating human-like motion. First, a dynamic model of the humanoid robot HRP-2 is elaborated based on the recursive Newton-Euler algorithm for spatial vectors. A new dynamic control scheme is then developed adopting a cascade of quadratic programs (QP) optimizing the cost functions and computing the torque control while satisfying equality and inequality constraints. The cascade of the quadratic programs is defined by a stack of tasks associated to a priority order. Next, we propose a unified formulation of the planar contact constraints, and we demonstrate that the proposed method allows taking into account multiple non coplanar contacts and generalizes the common ZMP constraint when only the feet are in contact with the ground. Then, we link the algorithms of motion generation resulting from robotics to the human motion capture tools by developing an original method of motion generation aiming at the imitation of the human motion. This method is based on the reshaping of the captured data and the motion editing by using the hierarchical solver previously introduced and the definition of dynamic tasks and constraints. This original method allows adjusting a captured human motion in order to reliably reproduce it on a humanoid while respecting its own dynamics. Finally, in order to simulate movements resembling to those of humans, we develop an anthropomorphic model with higher number of degrees of freedom than the one of HRP-2. The generic solver is used to simulate motion on this new model. A sequence of tasks is defined to describe a scenario played by a human. By a simple qualitative analysis of motion, we demonstrate that taking into account the dynamics provides a natural way to generate human-like movements.

Biomechanics of Anthropomorphic Systems

Biomechanics of Anthropomorphic Systems
Title Biomechanics of Anthropomorphic Systems PDF eBook
Author Gentiane Venture
Publisher Springer
Pages 314
Release 2018-08-01
Genre Technology & Engineering
ISBN 3319938703

Download Biomechanics of Anthropomorphic Systems Book in PDF, Epub and Kindle

Mechanical laws of motion were applied very early for better understanding anthropomorphic action as suggested in advance by Newton «For from hence are easily deduced the forces of machines, which are compounded of wheels, pullies, levers, cords, and weights, ascending directly or obliquely, and other mechanical powers; as also the force of the tendons to move the bones of animals». In the 19th century E.J. Marey and E. Muybridge introduced chronophotography to scientifically investigate animal and human movements. They opened the field of motion analysis by being the first scientists to correlate ground reaction forces with kinetics. Despite of the apparent simplicity of a given skilled movement, the organization of the underlying neuro-musculo-skeletal system remains unknown. A reason is the redundancy of the motor system: a given action can be realized by different muscle and joint activity patterns, and the same underlying activity may give rise to several movements. After the pioneering work of N. Bernstein in the 60’s on the existence of motor synergies, numerous researchers «walking on the border» of their disciplines tend to discover laws and principles underlying the human motions and how the brain reduces the redundancy of the system. These synergies represent the fundamental building blocks composing complex movements. In robotics, researchers face the same redundancy and complexity challenges as the researchers in life sciences. This book gathers works of roboticists and researchers in biomechanics in order to promote an interdisciplinary research on anthropomorphic systems at large and on humanoid robotics in particular.

Analysis and Generation of Highly Dynamic Motions of Anthropomorphic Systems

Analysis and Generation of Highly Dynamic Motions of Anthropomorphic Systems
Title Analysis and Generation of Highly Dynamic Motions of Anthropomorphic Systems PDF eBook
Author Galo Xavier Maldonado Toro
Publisher
Pages 133
Release 2017
Genre
ISBN

Download Analysis and Generation of Highly Dynamic Motions of Anthropomorphic Systems Book in PDF, Epub and Kindle

This thesis proposes an original and interdisciplinary approach to the treatment of whole-body human movements through the synergistic utilization of biomechanics, motor control and robotics. Robust methods of biomechanics are used to record, process and analyze whole-body human motions. The Uncontrolled Manifold approach (UCM) of motor control is extended to study highly dynamic movements processed in the biomechanical study, in order to determine if hypothesized dynamic tasks are being controlled stably by the central nervous system. This extension permits also to infer a hierarchical organization of the controlled dynamic tasks. The task space formalism of motion generation in robotics is used to generate whole-body motion by taking into account the hierarchy of tasks extracted in the motor control study. This approach permits to better understand the organization of human dynamic motions and provide a new methodology to generate whole-body human motions with anthropomorphic systems. A case study of highly dynamic and complex movements of Parkour, including jumps and landings, is utilized to illustrate the proposed approach.

Geometric and Numerical Foundations of Movements

Geometric and Numerical Foundations of Movements
Title Geometric and Numerical Foundations of Movements PDF eBook
Author Jean-Paul Laumond
Publisher Springer
Pages 417
Release 2017-05-02
Genre Technology & Engineering
ISBN 3319515470

Download Geometric and Numerical Foundations of Movements Book in PDF, Epub and Kindle

This book aims at gathering roboticists, control theorists, neuroscientists, and mathematicians, in order to promote a multidisciplinary research on movement analysis. It follows the workshop “ Geometric and Numerical Foundations of Movements ” held at LAAS-CNRS in Toulouse in November 2015[1]. Its objective is to lay the foundations for a mutual understanding that is essential for synergetic development in motion research. In particular, the book promotes applications to robotics --and control in general-- of new optimization techniques based on recent results from real algebraic geometry.

Computational Foundations of Anthropomorphic Locomotion

Computational Foundations of Anthropomorphic Locomotion
Title Computational Foundations of Anthropomorphic Locomotion PDF eBook
Author Justin Carpentier
Publisher
Pages 111
Release 2017
Genre
ISBN

Download Computational Foundations of Anthropomorphic Locomotion Book in PDF, Epub and Kindle

Anthropomorphic locomotion is a complex process that involves a very large number of degrees of freedom, the human body having more than three hundred joints against thirty in humanoid robots. Taken as a whole, these degrees of freedom show a certain coherence making it possible to set the anthropomorphic system in motion and maintain its equilibrium, in order to avoid falling. This thesis highlights the computational foundations behind this orchestration. It introduces a unified mathematical framework allowing both the study of human locomotion and the generation of locomotive trajectories for humanoid robots. This framework consists of a reduction of the body-complete dynamics of the system to consider only its projection around the center of gravity, also called centroid dynamics. Although reduced, we show that this centroidal dynamics plays a central role in the understanding and formation of locomotive movements. To do this, we first establish the observability conditions of this dynamic, that is to say that we show to what extent this data can be apprehended from sensors commonly used in biomechanics and robotics. Based on these observability conditions, we propose an estimator able to reconstruct the unbiased position of the center of gravity. From this estimator and the acquisition of walking motions on various subjects, we highlight the presence of a cycloidal pattern of the center of gravity in the sagittal plane when the human is walking nominally, that is, to say without thinking. The presence of this motif suggests the existence of a motor synergy hitherto unknown, supporting the theory of a general coordination of movements during locomotion. The last contribution of this thesis is on multi-contact locomotion. Humans have remarkable agility to perform locomotive movements that require joint use of the arms and legs, such as when climbing a rock wall. How to equip humanoid robots with such capabilities? The difficulty is certainly not technological, since current robots are able to develop sufficient mechanical powers. Their performances, evaluated both in terms of quality of movement and computing time, remain very limited. In this thesis, we address the problem of generating multi-contact trajectories in the form of an optimal control problem. The interest of this formulation is to start from the reduced model of centroid dynamics while responding to equilibrium constraints. The original idea is to maximize the likelihood of this reduced dynamic with respect to body-complete dynamics. It is based on learning a measurement of occupation that reflects the kinematic and dynamic capabilities of the robot. It is effective: the resulting algorithmic is compatible with real-time applications. The approach has been successfully evaluated on the humanoid robot HRP-2, on several modes of locomotion, thus demonstrating its versatility.

Generation of Whole-body Motion for Humanoid Robots with the Complete Dynamics

Generation of Whole-body Motion for Humanoid Robots with the Complete Dynamics
Title Generation of Whole-body Motion for Humanoid Robots with the Complete Dynamics PDF eBook
Author Oscar Efrain Ramos Ponce
Publisher
Pages 137
Release 2014
Genre
ISBN

Download Generation of Whole-body Motion for Humanoid Robots with the Complete Dynamics Book in PDF, Epub and Kindle

This thesis aims at providing a solution to the problem of motion generation for humanoid robots. The proposed framework generates whole-body motion using the complete robot dynamics in the task space satisfying contact constraints. This approach is known as operational-space inverse-dynamics control. The specification of the movements is done through objectives in the task space, and the high redundancy of the system is handled with a prioritized stack of tasks where lower priority tasks are only achieved if they do not interfere with higher priority ones. To this end, a hierarchical quadratic program is used, with the advantage of being able to specify tasks as equalities or inequalities at any level of the hierarchy. Motions where the robot sits down in an armchair and climbs a ladder show the capability to handle multiple non-coplanar contacts. The generic motion generation framework is then applied to some case studies using HRP-2 and Romeo. Complex and human-like movements are achieved using human motion imitation where the acquired motion passes through a kinematic and then dynamic retargeting processes. To deal with the instantaneous nature of inverse dynamics, a walking pattern generator is used as an input for the stack of tasks which makes a local correction of the feet position based on the contact points allowing to walk on non-planar surfaces. Visual feedback is also introduced to aid in the walking process. Alternatively, for a fast balance recovery, the capture point is introduced in the framework as a task and it is controlled within a desired region of space. Also, motion generation is presented for CHIMP which is a robot that needs a particular treatment.

ROMANSY 23 - Robot Design, Dynamics and Control

ROMANSY 23 - Robot Design, Dynamics and Control
Title ROMANSY 23 - Robot Design, Dynamics and Control PDF eBook
Author Gentiane Venture
Publisher Springer Nature
Pages 591
Release 2020-09-15
Genre Technology & Engineering
ISBN 3030583805

Download ROMANSY 23 - Robot Design, Dynamics and Control Book in PDF, Epub and Kindle

This book highlights the latest innovations and applications in robotics, as presented by leading international researchers and engineers at the ROMANSY 2020, the 23rd CISM IFToMM Symposium on Theory and Practice of Robots and Manipulators. The ROMANSY symposium is the first established conference that focuses on robotics theory and research, rather than industrial aspects. Bringing together researchers from a broad range of countries, the symposium is held bi-annually and plays a vital role in the development of the theory and practice of robotics, as well as the mechanical sciences. ROMANSY 2020 marks the 23rd installment in a series that began in 1973. The event was also the first topic-specific conference of the IFToMM, though not exclusively intended for the IFToMM community.