Generalized Linear Models With Examples in R
Title | Generalized Linear Models With Examples in R PDF eBook |
Author | Peter K. Dunn |
Publisher | Springer |
Pages | 573 |
Release | 2018-11-10 |
Genre | Mathematics |
ISBN | 1441901183 |
This textbook presents an introduction to generalized linear models, complete with real-world data sets and practice problems, making it applicable for both beginning and advanced students of applied statistics. Generalized linear models (GLMs) are powerful tools in applied statistics that extend the ideas of multiple linear regression and analysis of variance to include response variables that are not normally distributed. As such, GLMs can model a wide variety of data types including counts, proportions, and binary outcomes or positive quantities. The book is designed with the student in mind, making it suitable for self-study or a structured course. Beginning with an introduction to linear regression, the book also devotes time to advanced topics not typically included in introductory textbooks. It features chapter introductions and summaries, clear examples, and many practice problems, all carefully designed to balance theory and practice. The text also provides a working knowledge of applied statistical practice through the extensive use of R, which is integrated into the text. Other features include: • Advanced topics such as power variance functions, saddlepoint approximations, likelihood score tests, modified profile likelihood, small-dispersion asymptotics, and randomized quantile residuals • Nearly 100 data sets in the companion R package GLMsData • Examples that are cross-referenced to the companion data set, allowing readers to load the data and follow the analysis in their own R session
Generalized Linear Models
Title | Generalized Linear Models PDF eBook |
Author | Peter Dunn |
Publisher | Springer |
Pages | 10 |
Release | 2014-03-14 |
Genre | Mathematics |
ISBN | 9781441901170 |
This book is designed with teaching and learning in mind. It uses introductions, chapter summaries, exercises, short answers, simple, clear examples, examples of R code, and the minimum necessary theory.
Linear Models with R
Title | Linear Models with R PDF eBook |
Author | Julian J. Faraway |
Publisher | CRC Press |
Pages | 284 |
Release | 2016-04-19 |
Genre | Mathematics |
ISBN | 1439887349 |
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models
Data Analysis Using Hierarchical Generalized Linear Models with R
Title | Data Analysis Using Hierarchical Generalized Linear Models with R PDF eBook |
Author | Youngjo Lee |
Publisher | CRC Press |
Pages | 242 |
Release | 2017-07-06 |
Genre | Mathematics |
ISBN | 135181155X |
Since their introduction, hierarchical generalized linear models (HGLMs) have proven useful in various fields by allowing random effects in regression models. Interest in the topic has grown, and various practical analytical tools have been developed. This book summarizes developments within the field and, using data examples, illustrates how to analyse various kinds of data using R. It provides a likelihood approach to advanced statistical modelling including generalized linear models with random effects, survival analysis and frailty models, multivariate HGLMs, factor and structural equation models, robust modelling of random effects, models including penalty and variable selection and hypothesis testing. This example-driven book is aimed primarily at researchers and graduate students, who wish to perform data modelling beyond the frequentist framework, and especially for those searching for a bridge between Bayesian and frequentist statistics.
Foundations of Linear and Generalized Linear Models
Title | Foundations of Linear and Generalized Linear Models PDF eBook |
Author | Alan Agresti |
Publisher | John Wiley & Sons |
Pages | 471 |
Release | 2015-02-23 |
Genre | Mathematics |
ISBN | 1118730038 |
A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.
Introduction to General and Generalized Linear Models
Title | Introduction to General and Generalized Linear Models PDF eBook |
Author | Henrik Madsen |
Publisher | CRC Press |
Pages | 307 |
Release | 2010-11-09 |
Genre | Mathematics |
ISBN | 1439891141 |
Bridging the gap between theory and practice for modern statistical model building, Introduction to General and Generalized Linear Models presents likelihood-based techniques for statistical modelling using various types of data. Implementations using R are provided throughout the text, although other software packages are also discussed. Numerous
Modern Analysis of Biological Data
Title | Modern Analysis of Biological Data PDF eBook |
Author | Stanislav Pekár |
Publisher | Masarykova univerzita |
Pages | 259 |
Release | 2016-01-01 |
Genre | Art |
ISBN | 8021081066 |
Kniha je zaměřena na regresní modely, konkrétně jednorozměrné zobecněné lineární modely (GLM). Je určena především studentům a kolegům z biologických oborů a vyžaduje pouze základní statistické vzdělání, jakým je např. jednosemestrový kurz biostatistiky. Text knihy obsahuje nezbytné minimum statistické teorie, především však řešení 18 reálných příkladů z oblasti biologie. Každý příklad je rozpracován od popisu a stanovení cíle přes vývoj statistického modelu až po závěr. K analýze dat je použit populární a volně dostupný statistický software R. Příklady byly záměrně vybrány tak, aby upozornily na leckteré problémy a chyby, které se mohou v průběhu analýzy dat vyskytnout. Zároveň mají čtenáře motivovat k tomu, jak o statistických modelech přemýšlet a jak je používat. Řešení příkladů si může čtenář vyzkoušet sám na datech, jež jsou dodávána spolu s knihou.