Generalized Linear Models for Categorical and Continuous Limited Dependent Variables
Title | Generalized Linear Models for Categorical and Continuous Limited Dependent Variables PDF eBook |
Author | Michael Smithson |
Publisher | CRC Press |
Pages | 310 |
Release | 2013-09-05 |
Genre | Mathematics |
ISBN | 1466551739 |
Generalized Linear Models for Categorical and Continuous Limited Dependent Variables is designed for graduate students and researchers in the behavioral, social, health, and medical sciences. It incorporates examples of truncated counts, censored continuous variables, and doubly bounded continuous variables, such as percentages. The book provides broad, but unified, coverage, and the authors integrate the concepts and ideas shared across models and types of data, especially regarding conceptual links between discrete and continuous limited dependent variables. The authors argue that these dependent variables are, if anything, more common throughout the human sciences than the kind that suit linear regression. They cover special cases or extensions of models, estimation methods, model diagnostics, and, of course, software. They also discuss bounded continuous variables, boundary-inflated models, and methods for modeling heteroscedasticity. Wherever possible, the authors have illustrated concepts, models, and techniques with real or realistic datasets and demonstrations in R and Stata, and each chapter includes several exercises at the end. The illustrations and exercises help readers build conceptual understanding and fluency in using these techniques. At several points the authors bring together material that has been previously scattered across the literature in journal articles, software package documentation files, and blogs. These features help students learn to choose the appropriate models for their purpose.
Regression Models for Categorical and Limited Dependent Variables
Title | Regression Models for Categorical and Limited Dependent Variables PDF eBook |
Author | J. Scott Long |
Publisher | SAGE |
Pages | 334 |
Release | 1997-01-09 |
Genre | Mathematics |
ISBN | 9780803973749 |
Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.
Generalized Linear Models for Categorical and Continuous Limited Dependent Variables
Title | Generalized Linear Models for Categorical and Continuous Limited Dependent Variables PDF eBook |
Author | Michael Smithson |
Publisher | CRC Press |
Pages | 300 |
Release | 2013-09-05 |
Genre | Mathematics |
ISBN | 1466551755 |
Generalized Linear Models for Categorical and Continuous Limited Dependent Variables is designed for graduate students and researchers in the behavioral, social, health, and medical sciences. It incorporates examples of truncated counts, censored continuous variables, and doubly bounded continuous variables, such as percentages.The book provides br
Regression Models for Categorical Dependent Variables Using Stata, Second Edition
Title | Regression Models for Categorical Dependent Variables Using Stata, Second Edition PDF eBook |
Author | J. Scott Long |
Publisher | Stata Press |
Pages | 559 |
Release | 2006 |
Genre | Computers |
ISBN | 1597180114 |
The goal of the book is to make easier to carry out the computations necessary for the full interpretation of regression nonlinear models for categorical outcomes usign Stata.
Regression & Linear Modeling
Title | Regression & Linear Modeling PDF eBook |
Author | Jason W. Osborne |
Publisher | SAGE Publications |
Pages | 489 |
Release | 2016-03-24 |
Genre | Psychology |
ISBN | 1506302750 |
In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.
Regression With Social Data
Title | Regression With Social Data PDF eBook |
Author | Alfred DeMaris |
Publisher | John Wiley & Sons |
Pages | 560 |
Release | 2004-11-11 |
Genre | Mathematics |
ISBN | 0471677558 |
An accessible introduction to the use of regression analysis in the social sciences Regression with Social Data: Modeling Continuous and Limited Response Variables represents the most complete and fully integrated coverage of regression modeling currently available for graduate-level behavioral science students and practitioners. Covering techniques that span the full spectrum of levels of measurement for both continuous and limited response variables, and using examples taken from such disciplines as sociology, psychology, political science, and public health, the author succeeds in demystifying an academically rigorous subject and making it accessible to a wider audience. Content includes coverage of: Logit, probit, scobit, truncated, and censored regressions Multiple regression with ANOVA and ANCOVA models Binary and multinomial response models Poisson, negative binomial, and other regression models for event-count data Survival analysis using multistate, multiepisode, and interval-censored survival models Concepts are reinforced throughout with numerous chapter problems, exercises, and real data sets. Step-by-step solutions plus an appendix of mathematical tutorials make even complex problems accessible to readers with only moderate math skills. The book’s logical flow, wide applicability, and uniquely comprehensive coverage make it both an ideal text for a variety of graduate course settings and a useful reference for practicing researchers in the field.
Generalized Linear Models
Title | Generalized Linear Models PDF eBook |
Author | P. McCullagh |
Publisher | Routledge |
Pages | 536 |
Release | 2019-01-22 |
Genre | Mathematics |
ISBN | 1351445847 |
The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and ot