Complex and Differential Geometry

Complex and Differential Geometry
Title Complex and Differential Geometry PDF eBook
Author Wolfgang Ebeling
Publisher Springer Science & Business Media
Pages 424
Release 2011-06-27
Genre Mathematics
ISBN 3642203000

Download Complex and Differential Geometry Book in PDF, Epub and Kindle

This volume contains the Proceedings of the conference "Complex and Differential Geometry 2009", held at Leibniz Universität Hannover, September 14 - 18, 2009. It was the aim of this conference to bring specialists from differential geometry and (complex) algebraic geometry together and to discuss new developments in and the interaction between these fields. Correspondingly, the articles in this book cover a wide area of topics, ranging from topics in (classical) algebraic geometry through complex geometry, including (holomorphic) symplectic and poisson geometry, to differential geometry (with an emphasis on curvature flows) and topology.

Global Differential Geometry

Global Differential Geometry
Title Global Differential Geometry PDF eBook
Author Christian Bär
Publisher Springer Science & Business Media
Pages 520
Release 2011-12-18
Genre Mathematics
ISBN 3642228429

Download Global Differential Geometry Book in PDF, Epub and Kindle

This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.

Mathematical Reviews

Mathematical Reviews
Title Mathematical Reviews PDF eBook
Author
Publisher
Pages 1208
Release 2007
Genre Mathematics
ISBN

Download Mathematical Reviews Book in PDF, Epub and Kindle

Mirror Symmetry

Mirror Symmetry
Title Mirror Symmetry PDF eBook
Author Kentaro Hori
Publisher American Mathematical Soc.
Pages 954
Release 2003
Genre Mathematics
ISBN 0821829556

Download Mirror Symmetry Book in PDF, Epub and Kindle

This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.

Mathematical Aspects of String Theory

Mathematical Aspects of String Theory
Title Mathematical Aspects of String Theory PDF eBook
Author Shing-Tung Yau
Publisher World Scientific Publishing Company Incorporated
Pages 654
Release 1987
Genre Science
ISBN 9789971502744

Download Mathematical Aspects of String Theory Book in PDF, Epub and Kindle

Strings and Geometry

Strings and Geometry
Title Strings and Geometry PDF eBook
Author Clay Mathematics Institute. Summer School
Publisher American Mathematical Soc.
Pages 396
Release 2004
Genre Mathematics
ISBN 9780821837153

Download Strings and Geometry Book in PDF, Epub and Kindle

Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.

Categorical Perspectives

Categorical Perspectives
Title Categorical Perspectives PDF eBook
Author Jürgen Koslowski
Publisher Springer Science & Business Media
Pages 302
Release 2001-04-27
Genre Mathematics
ISBN 9780817641863

Download Categorical Perspectives Book in PDF, Epub and Kindle

"Categorical Perspectives" consists of introductory surveys as well as articles containing original research and complete proofs devoted mainly to the theoretical and foundational developments of category theory and its applications to other fields. A number of articles in the areas of topology, algebra and computer science reflect the varied interests of George Strecker to whom this work is dedicated. Notable also are an exposition of the contributions and importance of George Strecker's research and a survey chapter on general category theory. This work is an excellent reference text for researchers and graduate students in category theory and related areas. Contributors: H.L. Bentley * G. Castellini * R. El Bashir * H. Herrlich * M. Husek * L. Janos * J. Koslowski * V.A. Lemin * A. Melton * G. Preuá * Y.T. Rhineghost * B.S.W. Schroeder * L. Schr"der * G.E. Strecker * A. Zmrzlina