General Topology and Homotopy Theory

General Topology and Homotopy Theory
Title General Topology and Homotopy Theory PDF eBook
Author I.M. James
Publisher Springer Science & Business Media
Pages 253
Release 2012-12-06
Genre Mathematics
ISBN 1461382831

Download General Topology and Homotopy Theory Book in PDF, Epub and Kindle

Students of topology rightly complain that much of the basic material in the subject cannot easily be found in the literature, at least not in a convenient form. In this book I have tried to take a fresh look at some of this basic material and to organize it in a coherent fashion. The text is as self-contained as I could reasonably make it and should be quite accessible to anyone who has an elementary knowledge of point-set topology and group theory. This book is based on a course of 16 graduate lectures given at Oxford and elsewhere from time to time. In a course of that length one cannot discuss too many topics without being unduly superficial. However, this was never intended as a treatise on the subject but rather as a short introductory course which will, I hope, prove useful to specialists and non-specialists alike. The introduction contains a description of the contents. No algebraic or differen tial topology is involved, although I have borne in mind the needs of students of those branches of the subject. Exercises for the reader are scattered throughout the text, while suggestions for further reading are contained in the lists of references at the end of each chapter. In most cases these lists include the main sources I have drawn on, but this is not the type of book where it is practicable to give a reference for everything.

Topics in Topology. (AM-10), Volume 10

Topics in Topology. (AM-10), Volume 10
Title Topics in Topology. (AM-10), Volume 10 PDF eBook
Author Solomon Lefschetz
Publisher Princeton University Press
Pages 137
Release 2016-03-02
Genre Mathematics
ISBN 1400882338

Download Topics in Topology. (AM-10), Volume 10 Book in PDF, Epub and Kindle

Solomon Lefschetz pioneered the field of topology--the study of the properties of manysided figures and their ability to deform, twist, and stretch without changing their shape. According to Lefschetz, "If it's just turning the crank, it's algebra, but if it's got an idea in it, it's topology." The very word topology comes from the title of an earlier Lefschetz monograph published in 1920. In Topics in Topology Lefschetz developed a more in-depth introduction to the field, providing authoritative explanations of what would today be considered the basic tools of algebraic topology. Lefschetz moved to the United States from France in 1905 at the age of twenty-one to find employment opportunities not available to him as a Jew in France. He worked at Westinghouse Electric Company in Pittsburgh and there suffered a horrible laboratory accident, losing both hands and forearms. He continued to work for Westinghouse, teaching mathematics, and went on to earn a Ph.D. and to pursue an academic career in mathematics. When he joined the mathematics faculty at Princeton University, he became one of its first Jewish faculty members in any discipline. He was immensely popular, and his memory continues to elicit admiring anecdotes. Editor of Princeton University Press's Annals of Mathematics from 1928 to 1958, Lefschetz built it into a world-class scholarly journal. He published another book, Lectures on Differential Equations, with Princeton in 1946.

Modern Classical Homotopy Theory

Modern Classical Homotopy Theory
Title Modern Classical Homotopy Theory PDF eBook
Author Jeffrey Strom
Publisher American Mathematical Soc.
Pages 862
Release 2011-10-19
Genre Mathematics
ISBN 0821852868

Download Modern Classical Homotopy Theory Book in PDF, Epub and Kindle

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Algebraic Topology - Homotopy and Homology

Algebraic Topology - Homotopy and Homology
Title Algebraic Topology - Homotopy and Homology PDF eBook
Author Robert M. Switzer
Publisher Springer
Pages 541
Release 2017-12-01
Genre Mathematics
ISBN 3642619231

Download Algebraic Topology - Homotopy and Homology Book in PDF, Epub and Kindle

From the reviews: "The author has attempted an ambitious and most commendable project. [...] The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. [...] This book is, all in all, a very admirable work and a valuable addition to the literature." Mathematical Reviews

Homotopy Theory: An Introduction to Algebraic Topology

Homotopy Theory: An Introduction to Algebraic Topology
Title Homotopy Theory: An Introduction to Algebraic Topology PDF eBook
Author
Publisher Academic Press
Pages 383
Release 1975-11-12
Genre Mathematics
ISBN 0080873804

Download Homotopy Theory: An Introduction to Algebraic Topology Book in PDF, Epub and Kindle

Homotopy Theory: An Introduction to Algebraic Topology

Topology

Topology
Title Topology PDF eBook
Author Tai-Danae Bradley
Publisher MIT Press
Pages 167
Release 2020-08-18
Genre Mathematics
ISBN 0262359626

Download Topology Book in PDF, Epub and Kindle

A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory--a contemporary branch of mathematics that provides a way to represent abstract concepts--both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics.

Topology and Groupoids

Topology and Groupoids
Title Topology and Groupoids PDF eBook
Author Ronald Brown
Publisher Booksurge Llc
Pages 512
Release 2006
Genre Mathematics
ISBN 9781419627224

Download Topology and Groupoids Book in PDF, Epub and Kindle

Annotation. The book is intended as a text for a two-semester course in topology and algebraic topology at the advanced undergraduate orbeginning graduate level. There are over 500 exercises, 114 figures, numerous diagrams. The general direction of the book is towardhomotopy theory with a geometric point of view. This book would providea more than adequate background for a standard algebraic topology coursethat begins with homology theory. For more information seewww.bangor.ac.uk/r.brown/topgpds.htmlThis version dated April 19, 2006, has a number of corrections made.