Gaussian Markov Random Fields

Gaussian Markov Random Fields
Title Gaussian Markov Random Fields PDF eBook
Author Havard Rue
Publisher CRC Press
Pages 280
Release 2005-02-18
Genre Mathematics
ISBN 0203492021

Download Gaussian Markov Random Fields Book in PDF, Epub and Kindle

Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie

Gaussian Markov Random Fields

Gaussian Markov Random Fields
Title Gaussian Markov Random Fields PDF eBook
Author Havard Rue
Publisher CRC Press
Pages 242
Release 2005-02-18
Genre Mathematics
ISBN 1498718671

Download Gaussian Markov Random Fields Book in PDF, Epub and Kindle

Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie

The Geometry of Random Fields

The Geometry of Random Fields
Title The Geometry of Random Fields PDF eBook
Author Robert J. Adler
Publisher SIAM
Pages 295
Release 2010-01-28
Genre Mathematics
ISBN 0898716934

Download The Geometry of Random Fields Book in PDF, Epub and Kindle

An important treatment of the geometric properties of sets generated by random fields, including a comprehensive treatment of the mathematical basics of random fields in general. It is a standard reference for all researchers with an interest in random fields, whether they be theoreticians or come from applied areas.

Markov Random Field Modeling in Image Analysis

Markov Random Field Modeling in Image Analysis
Title Markov Random Field Modeling in Image Analysis PDF eBook
Author Stan Z. Li
Publisher Springer Science & Business Media
Pages 372
Release 2009-04-03
Genre Computers
ISBN 1848002793

Download Markov Random Field Modeling in Image Analysis Book in PDF, Epub and Kindle

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.

Gaussian and Non-Gaussian Linear Time Series and Random Fields

Gaussian and Non-Gaussian Linear Time Series and Random Fields
Title Gaussian and Non-Gaussian Linear Time Series and Random Fields PDF eBook
Author Murray Rosenblatt
Publisher Springer Science & Business Media
Pages 272
Release 2000
Genre Mathematics
ISBN 9780387989174

Download Gaussian and Non-Gaussian Linear Time Series and Random Fields Book in PDF, Epub and Kindle

The principal focus here is on autoregressive moving average models and analogous random fields, with probabilistic and statistical questions also being discussed. The book contrasts Gaussian models with noncausal or noninvertible (nonminimum phase) non-Gaussian models and deals with problems of prediction and estimation. New results for nonminimum phase non-Gaussian processes are exposited and open questions are noted. Intended as a text for gradutes in statistics, mathematics, engineering, the natural sciences and economics, the only recommendation is an initial background in probability theory and statistics. Notes on background, history and open problems are given at the end of the book.

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA
Title Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA PDF eBook
Author Elias T. Krainski
Publisher CRC Press
Pages 284
Release 2018-12-07
Genre Mathematics
ISBN 0429629850

Download Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA Book in PDF, Epub and Kindle

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

An Introduction to Conditional Random Fields

An Introduction to Conditional Random Fields
Title An Introduction to Conditional Random Fields PDF eBook
Author Charles Sutton
Publisher Now Pub
Pages 120
Release 2012
Genre Computers
ISBN 9781601985729

Download An Introduction to Conditional Random Fields Book in PDF, Epub and Kindle

An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge of graphical modeling, and so is intended to be useful to practitioners in a wide variety of fields.