Galois Theory Through Exercises

Galois Theory Through Exercises
Title Galois Theory Through Exercises PDF eBook
Author Juliusz Brzeziński
Publisher Springer
Pages 296
Release 2018-03-21
Genre Mathematics
ISBN 331972326X

Download Galois Theory Through Exercises Book in PDF, Epub and Kindle

This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois’ theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.

Foundations of Galois Theory

Foundations of Galois Theory
Title Foundations of Galois Theory PDF eBook
Author M.M. Postnikov
Publisher Elsevier
Pages 123
Release 2014-07-10
Genre Mathematics
ISBN 1483156478

Download Foundations of Galois Theory Book in PDF, Epub and Kindle

Foundations of Galois Theory is an introduction to group theory, field theory, and the basic concepts of abstract algebra. The text is divided into two parts. Part I presents the elements of Galois Theory, in which chapters are devoted to the presentation of the elements of field theory, facts from the theory of groups, and the applications of Galois Theory. Part II focuses on the development of general Galois Theory and its use in the solution of equations by radicals. Equations that are solvable by radicals; the construction of equations solvable by radicals; and the unsolvability by radicals of the general equation of degree n ? 5 are discussed as well. Mathematicians, physicists, researchers, and students of mathematics will find this book highly useful.

Field and Galois Theory

Field and Galois Theory
Title Field and Galois Theory PDF eBook
Author Patrick Morandi
Publisher Springer Science & Business Media
Pages 294
Release 2012-12-06
Genre Mathematics
ISBN 1461240409

Download Field and Galois Theory Book in PDF, Epub and Kindle

In the fall of 1990, I taught Math 581 at New Mexico State University for the first time. This course on field theory is the first semester of the year-long graduate algebra course here at NMSU. In the back of my mind, I thought it would be nice someday to write a book on field theory, one of my favorite mathematical subjects, and I wrote a crude form of lecture notes that semester. Those notes sat undisturbed for three years until late in 1993 when I finally made the decision to turn the notes into a book. The notes were greatly expanded and rewritten, and they were in a form sufficient to be used as the text for Math 581 when I taught it again in the fall of 1994. Part of my desire to write a textbook was due to the nonstandard format of our graduate algebra sequence. The first semester of our sequence is field theory. Our graduate students generally pick up group and ring theory in a senior-level course prior to taking field theory. Since we start with field theory, we would have to jump into the middle of most graduate algebra textbooks. This can make reading the text difficult by not knowing what the author did before the field theory chapters. Therefore, a book devoted to field theory is desirable for us as a text. While there are a number of field theory books around, most of these were less complete than I wanted.

Fields and Galois Theory

Fields and Galois Theory
Title Fields and Galois Theory PDF eBook
Author John M. Howie
Publisher Springer Science & Business Media
Pages 230
Release 2007-10-11
Genre Mathematics
ISBN 1852339861

Download Fields and Galois Theory Book in PDF, Epub and Kindle

A modern and student-friendly introduction to this popular subject: it takes a more "natural" approach and develops the theory at a gentle pace with an emphasis on clear explanations Features plenty of worked examples and exercises, complete with full solutions, to encourage independent study Previous books by Howie in the SUMS series have attracted excellent reviews

Differential Galois Theory through Riemann-Hilbert Correspondence

Differential Galois Theory through Riemann-Hilbert Correspondence
Title Differential Galois Theory through Riemann-Hilbert Correspondence PDF eBook
Author Jacques Sauloy
Publisher American Mathematical Soc.
Pages 303
Release 2016-12-07
Genre Mathematics
ISBN 1470430959

Download Differential Galois Theory through Riemann-Hilbert Correspondence Book in PDF, Epub and Kindle

Differential Galois theory is an important, fast developing area which appears more and more in graduate courses since it mixes fundamental objects from many different areas of mathematics in a stimulating context. For a long time, the dominant approach, usually called Picard-Vessiot Theory, was purely algebraic. This approach has been extensively developed and is well covered in the literature. An alternative approach consists in tagging algebraic objects with transcendental information which enriches the understanding and brings not only new points of view but also new solutions. It is very powerful and can be applied in situations where the Picard-Vessiot approach is not easily extended. This book offers a hands-on transcendental approach to differential Galois theory, based on the Riemann-Hilbert correspondence. Along the way, it provides a smooth, down-to-earth introduction to algebraic geometry, category theory and tannakian duality. Since the book studies only complex analytic linear differential equations, the main prerequisites are complex function theory, linear algebra, and an elementary knowledge of groups and of polynomials in many variables. A large variety of examples, exercises, and theoretical constructions, often via explicit computations, offers first-year graduate students an accessible entry into this exciting area.

Exploratory Galois Theory

Exploratory Galois Theory
Title Exploratory Galois Theory PDF eBook
Author John Swallow
Publisher Cambridge University Press
Pages 224
Release 2004-10-11
Genre Computers
ISBN 9780521544993

Download Exploratory Galois Theory Book in PDF, Epub and Kindle

Combining a concrete perspective with an exploration-based approach, Exploratory Galois Theory develops Galois theory at an entirely undergraduate level. The text grounds the presentation in the concept of algebraic numbers with complex approximations and assumes of its readers only a first course in abstract algebra. For readers with Maple or Mathematica, the text introduces tools for hands-on experimentation with finite extensions of the rational numbers, enabling a familiarity never before available to students of the subject. The text is appropriate for traditional lecture courses, for seminars, or for self-paced independent study by undergraduates and graduate students.

Galois Theory

Galois Theory
Title Galois Theory PDF eBook
Author Steven H. Weintraub
Publisher Springer Science & Business Media
Pages 220
Release 2008-10-20
Genre Mathematics
ISBN 0387875751

Download Galois Theory Book in PDF, Epub and Kindle

Galois theory is a mature mathematical subject of particular beauty. Any Galois theory book written nowadays bears a great debt to Emil Artin’s classic text "Galois Theory," and this book is no exception. While Artin’s book pioneered an approach to Galois theory that relies heavily on linear algebra, this book’s author takes the linear algebra emphasis even further. This special approach to the subject together with the clarity of its presentation, as well as the choice of topics covered, has made the first edition of this book a more than worthwhile addition to the literature on Galois Theory. The second edition, with a new chapter on transcendental extensions, will only further serve to make the book appreciated by and approachable to undergraduate and beginning graduate math majors.