Gallium Nitride Epitaxy by a Novel Hybrid VPE Technique

Gallium Nitride Epitaxy by a Novel Hybrid VPE Technique
Title Gallium Nitride Epitaxy by a Novel Hybrid VPE Technique PDF eBook
Author David J. Miller
Publisher Stanford University
Pages 131
Release 2011
Genre
ISBN

Download Gallium Nitride Epitaxy by a Novel Hybrid VPE Technique Book in PDF, Epub and Kindle

Gallium nitride is an important material for the production of next-generation visible and near-UV optical devices, as well as for high temperature electronic amplifiers and circuits; however there has been no bulk method for the production of GaN substrates for device layer growth. Instead, thick GaN layers are heteroepitaxially deposited onto non-native substrates (usually sapphire) by one of two vapor phase epitaxy (VPE) techniques: MOVPE (metalorganic VPE) or HVPE (hydride VPE). Each method has its strengths and weaknesses: MOVPE has precise growth rate and layer thickness control but it is slow and expensive; HVPE is a low-cost method for high rate deposition of thick GaN, but it lacks the precise control and heterojunction layer growth required for device structures. Because of the large (14%) lattice mismatch, GaN grown on sapphire requires the prior deposition of a low temperature MOVPE nucleation layer using a second growth process in a separate deposition system. Here we present a novel hybrid VPE system incorporating elements of both techniques, allowing MOVPE and HVPE in a single growth run. In this way, a thick GaN layer can be produced directly on sapphire. GaN growth commences as small (50-100 nm diameter) coherent strained 3-dimensional islands which coalesce into a continuous film, after which 2-dimensional layer growth commences. The coalescence of islands imparts significant stress into the growing film, which increases with the film thickness until catastrophic breakage occurs, in-situ. Additionally, the mismatch in thermal expansion rates induces compressive stress upon cooling from the growth temperature of 1025°C. We demonstrate a growth technique that mitigates these stresses, by using a 2-step growth sequence: an initial high growth rate step resulting in a pitted but relaxed film, followed by a low growth rate smoothing layer. As a result, thick (> 50 [Mu]m) and freestanding films have been grown successfully. X-ray rocking curve linewidth of 105 arcseconds and 10K PL indicating no "yellow" emission indicate that the material quality is higher than that produced by conventional MOVPE. By further modifying the hybrid system to include a metallic Mn source, it is possible to grow a doped semi-insulating GaN template for use in high frequency electronics devices.

Hydride vapour phase epitaxy growth, crystal properties and dopant incorporation in gallium nitride

Hydride vapour phase epitaxy growth, crystal properties and dopant incorporation in gallium nitride
Title Hydride vapour phase epitaxy growth, crystal properties and dopant incorporation in gallium nitride PDF eBook
Author Patrick Hofmann
Publisher BoD – Books on Demand
Pages 166
Release 2018-08-15
Genre Science
ISBN 3752884924

Download Hydride vapour phase epitaxy growth, crystal properties and dopant incorporation in gallium nitride Book in PDF, Epub and Kindle

This dissertation employs doping to investigate basic gallium nitride (GaN) crystal properties and to solve challenges of the hydride vapour phase epitaxy (HVPE) growth process. Whereas the first chapter is a short introduction to the history of the GaN single crystal growth, the 2nd chapter introduces to current crystal growth techniques, discusses properties of the GaN material system and the resulting influence on the applicable crystal growth techniques. HVPE, as a vapour phase epitaxy crystal growth method will be explained in greater detail, with focus on the used vertical reactor and its capabilities for doping. The 3rd chapter then focusses on point defects in GaN, specifically on intentionally introduced extrinsic point defects used for doping purposes, i.e. to achieve p-type, n-type or semi-insulating behaviour. Different dopants will be reviewed before the diffusion of point defects in a solid will be discussed. The in-situ introduction of iron, manganese, and carbon during crystal growth is employed in chapter 4 to compensate the unintentional doping (UID) of the GaN crystals, and therefore to achieve truly semi-insulating behaviour of the HVPE GaN. However the focus of this chapter lies on the characterisation of the pyroelectric coefficient (p), as semi-insulating properties are a necessary requirement for the applied Sharp-Garn measurement method. The creation of tensile stress due to in-situ silicon doping during GaN crystal growth is the topic of the 5th chapter. The tensile stress generation effect will be reproduced and the strain inside the crystal will be monitored ex-situ employing Raman spectroscopy. The n-type doping is achieved by using a vapour phase doping line and a process is developed to hinder the tensile strain generation effect. The 6th chapter concentrates on the delivery of the doping precursor via a solid state doping line, a newly developed doping method. Similar to chapter 5, the doping line is characterised carefully before the germanium doping is employed to the GaN growth. The focus lies on the homogeneity of the germanium doping and it is compared compared to the silicon doping and the vapour phase doping line. Benefits and drawbacks are discussed in conjunction with the obtained results. The germanium doping via solid state doping line is applied to the HVPE GaN growth process to measure accurately growth process related properties unique to the applied set of GaN growth parameters.

Japanese Science and Technology

Japanese Science and Technology
Title Japanese Science and Technology PDF eBook
Author
Publisher
Pages 724
Release 1986
Genre Science
ISBN

Download Japanese Science and Technology Book in PDF, Epub and Kindle

Ceramic Abstracts

Ceramic Abstracts
Title Ceramic Abstracts PDF eBook
Author
Publisher
Pages 950
Release 1999
Genre Ceramics
ISBN

Download Ceramic Abstracts Book in PDF, Epub and Kindle

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports
Title Scientific and Technical Aerospace Reports PDF eBook
Author
Publisher
Pages 1278
Release 1984
Genre Aeronautics
ISBN

Download Scientific and Technical Aerospace Reports Book in PDF, Epub and Kindle

Chemical Abstracts

Chemical Abstracts
Title Chemical Abstracts PDF eBook
Author
Publisher
Pages 2540
Release 2002
Genre Chemistry
ISBN

Download Chemical Abstracts Book in PDF, Epub and Kindle

Springer Handbook of Electronic and Photonic Materials

Springer Handbook of Electronic and Photonic Materials
Title Springer Handbook of Electronic and Photonic Materials PDF eBook
Author Safa Kasap
Publisher Springer
Pages 1536
Release 2017-10-04
Genre Technology & Engineering
ISBN 331948933X

Download Springer Handbook of Electronic and Photonic Materials Book in PDF, Epub and Kindle

The second, updated edition of this essential reference book provides a wealth of detail on a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its extensive coverage, with clear illustrations and applications, carefully selected chapter sequencing and logical flow, makes it very different from other electronic materials handbooks. It has been written by professionals in the field and instructors who teach the subject at a university or in corporate laboratories. The Springer Handbook of Electronic and Photonic Materials, second edition, includes practical applications used as examples, details of experimental techniques, useful tables that summarize equations, and, most importantly, properties of various materials, as well as an extensive glossary. Along with significant updates to the content and the references, the second edition includes a number of new chapters such as those covering novel materials and selected applications. This handbook is a valuable resource for graduate students, researchers and practicing professionals working in the area of electronic, optoelectronic and photonic materials.