G ADD-ON, DIGITAL, SIEVE, GENERAL PERIODICAL, AND NON-ARITHMETIC SEQUENCES

G ADD-ON, DIGITAL, SIEVE, GENERAL PERIODICAL, AND NON-ARITHMETIC SEQUENCES
Title G ADD-ON, DIGITAL, SIEVE, GENERAL PERIODICAL, AND NON-ARITHMETIC SEQUENCES PDF eBook
Author Florentin Smarandache
Publisher Infinite Study
Pages 14
Release
Genre
ISBN

Download G ADD-ON, DIGITAL, SIEVE, GENERAL PERIODICAL, AND NON-ARITHMETIC SEQUENCES Book in PDF, Epub and Kindle

Other new sequences are introduced in number theory, and for each one a general question: how many primes each sequence has.

Not Always Buried Deep

Not Always Buried Deep
Title Not Always Buried Deep PDF eBook
Author Paul Pollack
Publisher American Mathematical Soc.
Pages 322
Release 2009-10-14
Genre Mathematics
ISBN 0821848801

Download Not Always Buried Deep Book in PDF, Epub and Kindle

Number theory is one of the few areas of mathematics where problems of substantial interest can be fully described to someone with minimal mathematical background. Solving such problems sometimes requires difficult and deep methods. But this is not a universal phenomenon; many engaging problems can be successfully attacked with little more than one's mathematical bare hands. In this case one says that the problem can be solved in an elementary way. Such elementary methods and the problems to which they apply are the subject of this book. Not Always Buried Deep is designed to be read and enjoyed by those who wish to explore elementary methods in modern number theory. The heart of the book is a thorough introduction to elementary prime number theory, including Dirichlet's theorem on primes in arithmetic progressions, the Brun sieve, and the Erdos-Selberg proof of the prime number theorem. Rather than trying to present a comprehensive treatise, Pollack focuses on topics that are particularly attractive and accessible. Other topics covered include Gauss's theory of cyclotomy and its applications to rational reciprocity laws, Hilbert's solution to Waring's problem, and modern work on perfect numbers. The nature of the material means that little is required in terms of prerequisites: The reader is expected to have prior familiarity with number theory at the level of an undergraduate course and a first course in modern algebra (covering groups, rings, and fields). The exposition is complemented by over 200 exercises and 400 references.

Mathematics of Public Key Cryptography

Mathematics of Public Key Cryptography
Title Mathematics of Public Key Cryptography PDF eBook
Author Steven D. Galbraith
Publisher Cambridge University Press
Pages 631
Release 2012-03-15
Genre Computers
ISBN 1107013925

Download Mathematics of Public Key Cryptography Book in PDF, Epub and Kindle

This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.

Recurrence Sequences

Recurrence Sequences
Title Recurrence Sequences PDF eBook
Author Graham Everest
Publisher American Mathematical Soc.
Pages 338
Release 2015-09-03
Genre Mathematics
ISBN 1470423154

Download Recurrence Sequences Book in PDF, Epub and Kindle

Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory.

Analytic Combinatorics

Analytic Combinatorics
Title Analytic Combinatorics PDF eBook
Author Philippe Flajolet
Publisher Cambridge University Press
Pages 825
Release 2009-01-15
Genre Mathematics
ISBN 1139477161

Download Analytic Combinatorics Book in PDF, Epub and Kindle

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.

Mathematics and Computation

Mathematics and Computation
Title Mathematics and Computation PDF eBook
Author Avi Wigderson
Publisher Princeton University Press
Pages 434
Release 2019-10-29
Genre Computers
ISBN 0691189137

Download Mathematics and Computation Book in PDF, Epub and Kindle

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Problem-Solving Strategies

Problem-Solving Strategies
Title Problem-Solving Strategies PDF eBook
Author Arthur Engel
Publisher Springer Science & Business Media
Pages 404
Release 2008-01-19
Genre Mathematics
ISBN 0387226419

Download Problem-Solving Strategies Book in PDF, Epub and Kindle

A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.