Fuzzy Models and Algorithms for Pattern Recognition and Image Processing

Fuzzy Models and Algorithms for Pattern Recognition and Image Processing
Title Fuzzy Models and Algorithms for Pattern Recognition and Image Processing PDF eBook
Author James C. Bezdek
Publisher Springer Science & Business Media
Pages 786
Release 2006-09-28
Genre Computers
ISBN 0387245790

Download Fuzzy Models and Algorithms for Pattern Recognition and Image Processing Book in PDF, Epub and Kindle

Fuzzy Models and Algorithms for Pattern Recognition and Image Processing presents a comprehensive introduction of the use of fuzzy models in pattern recognition and selected topics in image processing and computer vision. Unique to this volume in the Kluwer Handbooks of Fuzzy Sets Series is the fact that this book was written in its entirety by its four authors. A single notation, presentation style, and purpose are used throughout. The result is an extensive unified treatment of many fuzzy models for pattern recognition. The main topics are clustering and classifier design, with extensive material on feature analysis relational clustering, image processing and computer vision. Also included are numerous figures, images and numerical examples that illustrate the use of various models involving applications in medicine, character and word recognition, remote sensing, military image analysis, and industrial engineering.

Fuzzy Models for Pattern Recognition

Fuzzy Models for Pattern Recognition
Title Fuzzy Models for Pattern Recognition PDF eBook
Author James C. Bezdek
Publisher Institute of Electrical & Electronics Engineers(IEEE)
Pages 560
Release 1992
Genre Computers
ISBN

Download Fuzzy Models for Pattern Recognition Book in PDF, Epub and Kindle

Pattern Recognition with Fuzzy Objective Function Algorithms

Pattern Recognition with Fuzzy Objective Function Algorithms
Title Pattern Recognition with Fuzzy Objective Function Algorithms PDF eBook
Author James C. Bezdek
Publisher Springer Science & Business Media
Pages 267
Release 2013-03-13
Genre Mathematics
ISBN 147570450X

Download Pattern Recognition with Fuzzy Objective Function Algorithms Book in PDF, Epub and Kindle

The fuzzy set was conceived as a result of an attempt to come to grips with the problem of pattern recognition in the context of imprecisely defined categories. In such cases, the belonging of an object to a class is a matter of degree, as is the question of whether or not a group of objects form a cluster. A pioneering application of the theory of fuzzy sets to cluster analysis was made in 1969 by Ruspini. It was not until 1973, however, when the appearance of the work by Dunn and Bezdek on the Fuzzy ISODATA (or fuzzy c-means) algorithms became a landmark in the theory of cluster analysis, that the relevance of the theory of fuzzy sets to cluster analysis and pattern recognition became clearly established. Since then, the theory of fuzzy clustering has developed rapidly and fruitfully, with the author of the present monograph contributing a major share of what we know today. In their seminal work, Bezdek and Dunn have introduced the basic idea of determining the fuzzy clusters by minimizing an appropriately defined functional, and have derived iterative algorithms for computing the membership functions for the clusters in question. The important issue of convergence of such algorithms has become much better understood as a result of recent work which is described in the monograph.

Rough-Fuzzy Pattern Recognition

Rough-Fuzzy Pattern Recognition
Title Rough-Fuzzy Pattern Recognition PDF eBook
Author Pradipta Maji
Publisher John Wiley & Sons
Pages 312
Release 2012-02-14
Genre Technology & Engineering
ISBN 111800440X

Download Rough-Fuzzy Pattern Recognition Book in PDF, Epub and Kindle

Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.

Fuzzy Modeling and Control

Fuzzy Modeling and Control
Title Fuzzy Modeling and Control PDF eBook
Author Andrzej Piegat
Publisher Physica
Pages 737
Release 2013-03-19
Genre Computers
ISBN 3790818240

Download Fuzzy Modeling and Control Book in PDF, Epub and Kindle

In the last ten years, a true explosion of investigations into fuzzy modeling and its applications in control, diagnostics, decision making, optimization, pattern recognition, robotics, etc. has been observed. The attraction of fuzzy modeling results from its intelligibility and the high effectiveness of the models obtained. Owing to this the modeling can be applied for the solution of problems which could not be solved till now with any known conventional methods. The book provides the reader with an advanced introduction to the problems of fuzzy modeling and to one of its most important applications: fuzzy control. It is based on the latest and most significant knowledge of the subject and can be used not only by control specialists but also by specialists working in any field requiring plant modeling, process modeling, and systems modeling, e.g. economics, business, medicine, agriculture,and meteorology.

Computational Intelligence for Pattern Recognition

Computational Intelligence for Pattern Recognition
Title Computational Intelligence for Pattern Recognition PDF eBook
Author Witold Pedrycz
Publisher Springer
Pages 431
Release 2018-04-30
Genre Technology & Engineering
ISBN 3319896296

Download Computational Intelligence for Pattern Recognition Book in PDF, Epub and Kindle

The book presents a comprehensive and up-to-date review of fuzzy pattern recognition. It carefully discusses a range of methodological and algorithmic issues, as well as implementations and case studies, and identifies the best design practices, assesses business models and practices of pattern recognition in real-world applications in industry, health care, administration, and business. Since the inception of fuzzy sets, fuzzy pattern recognition with its methodology, algorithms, and applications, has offered new insights into the principles and practice of pattern classification. Computational intelligence (CI) establishes a comprehensive framework aimed at fostering the paradigm of pattern recognition. The collection of contributions included in this book offers a representative overview of the advances in the area, with timely, in-depth and comprehensive material on the conceptually appealing and practically sound methodology and practices of CI-based pattern recognition.

Computer Models of Speech Using Fuzzy Algorithms

Computer Models of Speech Using Fuzzy Algorithms
Title Computer Models of Speech Using Fuzzy Algorithms PDF eBook
Author Renato de Mori
Publisher Springer Science & Business Media
Pages 505
Release 2013-06-29
Genre Science
ISBN 1461337429

Download Computer Models of Speech Using Fuzzy Algorithms Book in PDF, Epub and Kindle

It is with great pleasure that I present this third volume of the series "Advanced Applications in Pattern Recognition." It represents the summary of many man- (and woman-) years of effort in the field of speech recognition by tne author's former team at the University of Turin. It combines the best results in fuzzy-set theory and artificial intelligence to point the way to definitive solutions to the speech-recognition problem. It is my hope that it will become a classic work in this field. I take this opportunity to extend my thanks and appreciation to Sy Marchand, Plenum's Senior Editor responsible for overseeing this series, and to Susan Lee and Jo Winton, who had the monumental task of preparing the camera-ready master sheets for publication. Morton Nadler General Editor vii PREFACE Si parva licet componere magnis Virgil, Georgics, 4,176 (37-30 B.C.) The work reported in this book results from years of research oriented toward the goal of making an experimental model capable of understanding spoken sentences of a natural language. This is, of course, a modest attempt compared to the complexity of the functions performed by the human brain. A method is introduced for conce1v1ng modules performing perceptual tasks and for combining them in a speech understanding system.