An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling
Title An Introduction to Stochastic Modeling PDF eBook
Author Howard M. Taylor
Publisher Academic Press
Pages 410
Release 2014-05-10
Genre Mathematics
ISBN 1483269272

Download An Introduction to Stochastic Modeling Book in PDF, Epub and Kindle

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Fundamentals of Stochastic Filtering

Fundamentals of Stochastic Filtering
Title Fundamentals of Stochastic Filtering PDF eBook
Author Alan Bain
Publisher Springer Science & Business Media
Pages 395
Release 2008-10-08
Genre Mathematics
ISBN 0387768963

Download Fundamentals of Stochastic Filtering Book in PDF, Epub and Kindle

This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.

Fundamentals of Stochastic Networks

Fundamentals of Stochastic Networks
Title Fundamentals of Stochastic Networks PDF eBook
Author Oliver C. Ibe
Publisher John Wiley & Sons
Pages 263
Release 2011-08-24
Genre Mathematics
ISBN 1118092988

Download Fundamentals of Stochastic Networks Book in PDF, Epub and Kindle

An interdisciplinary approach to understanding queueing and graphical networks In today's era of interdisciplinary studies and research activities, network models are becoming increasingly important in various areas where they have not regularly been used. Combining techniques from stochastic processes and graph theory to analyze the behavior of networks, Fundamentals of Stochastic Networks provides an interdisciplinary approach by including practical applications of these stochastic networks in various fields of study, from engineering and operations management to communications and the physical sciences. The author uniquely unites different types of stochastic, queueing, and graphical networks that are typically studied independently of each other. With balanced coverage, the book is organized into three succinct parts: Part I introduces basic concepts in probability and stochastic processes, with coverage on counting, Poisson, renewal, and Markov processes Part II addresses basic queueing theory, with a focus on Markovian queueing systems and also explores advanced queueing theory, queueing networks, and approximations of queueing networks Part III focuses on graphical models, presenting an introduction to graph theory along with Bayesian, Boolean, and random networks The author presents the material in a self-contained style that helps readers apply the presented methods and techniques to science and engineering applications. Numerous practical examples are also provided throughout, including all related mathematical details. Featuring basic results without heavy emphasis on proving theorems, Fundamentals of Stochastic Networks is a suitable book for courses on probability and stochastic networks, stochastic network calculus, and stochastic network optimization at the upper-undergraduate and graduate levels. The book also serves as a reference for researchers and network professionals who would like to learn more about the general principles of stochastic networks.

Introduction to Matrix Analytic Methods in Stochastic Modeling

Introduction to Matrix Analytic Methods in Stochastic Modeling
Title Introduction to Matrix Analytic Methods in Stochastic Modeling PDF eBook
Author G. Latouche
Publisher SIAM
Pages 331
Release 1999-01-01
Genre Mathematics
ISBN 0898714257

Download Introduction to Matrix Analytic Methods in Stochastic Modeling Book in PDF, Epub and Kindle

Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.

Basics of Applied Stochastic Processes

Basics of Applied Stochastic Processes
Title Basics of Applied Stochastic Processes PDF eBook
Author Richard Serfozo
Publisher Springer Science & Business Media
Pages 452
Release 2009-01-24
Genre Mathematics
ISBN 3540893326

Download Basics of Applied Stochastic Processes Book in PDF, Epub and Kindle

Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.

Essentials of Stochastic Finance

Essentials of Stochastic Finance
Title Essentials of Stochastic Finance PDF eBook
Author Albert N. Shiryaev
Publisher World Scientific
Pages 852
Release 1999
Genre Business & Economics
ISBN 9810236050

Download Essentials of Stochastic Finance Book in PDF, Epub and Kindle

Readership: Undergraduates and researchers in probability and statistics; applied, pure and financial mathematics; economics; chaos.

Foundations and Methods of Stochastic Simulation

Foundations and Methods of Stochastic Simulation
Title Foundations and Methods of Stochastic Simulation PDF eBook
Author Barry Nelson
Publisher Springer Science & Business Media
Pages 285
Release 2013-01-31
Genre Business & Economics
ISBN 146146160X

Download Foundations and Methods of Stochastic Simulation Book in PDF, Epub and Kindle

This graduate-level text covers modeling, programming and analysis of simulation experiments and provides a rigorous treatment of the foundations of simulation and why it works. It introduces object-oriented programming for simulation, covers both the probabilistic and statistical basis for simulation in a rigorous but accessible manner (providing all necessary background material); and provides a modern treatment of experiment design and analysis that goes beyond classical statistics. The book emphasizes essential foundations throughout, rather than providing a compendium of algorithms and theorems and prepares the reader to use simulation in research as well as practice. The book is a rigorous, but concise treatment, emphasizing lasting principles but also providing specific training in modeling, programming and analysis. In addition to teaching readers how to do simulation, it also prepares them to use simulation in their research; no other book does this. An online solutions manual for end of chapter exercises is also provided.​