Fundamentals of Hyperbolic Manifolds

Fundamentals of Hyperbolic Manifolds
Title Fundamentals of Hyperbolic Manifolds PDF eBook
Author R. D. Canary
Publisher Cambridge University Press
Pages 356
Release 2006-04-13
Genre Mathematics
ISBN 9781139447195

Download Fundamentals of Hyperbolic Manifolds Book in PDF, Epub and Kindle

Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.

Foundations of Hyperbolic Manifolds

Foundations of Hyperbolic Manifolds
Title Foundations of Hyperbolic Manifolds PDF eBook
Author John Ratcliffe
Publisher Springer Science & Business Media
Pages 761
Release 2013-03-09
Genre Mathematics
ISBN 1475740131

Download Foundations of Hyperbolic Manifolds Book in PDF, Epub and Kindle

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

Hyperbolic Manifolds

Hyperbolic Manifolds
Title Hyperbolic Manifolds PDF eBook
Author Albert Marden
Publisher Cambridge University Press
Pages 535
Release 2016-02-01
Genre Mathematics
ISBN 1316432521

Download Hyperbolic Manifolds Book in PDF, Epub and Kindle

Over the past three decades there has been a total revolution in the classic branch of mathematics called 3-dimensional topology, namely the discovery that most solid 3-dimensional shapes are hyperbolic 3-manifolds. This book introduces and explains hyperbolic geometry and hyperbolic 3- and 2-dimensional manifolds in the first two chapters and then goes on to develop the subject. The author discusses the profound discoveries of the astonishing features of these 3-manifolds, helping the reader to understand them without going into long, detailed formal proofs. The book is heavily illustrated with pictures, mostly in color, that help explain the manifold properties described in the text. Each chapter ends with a set of exercises and explorations that both challenge the reader to prove assertions made in the text, and suggest further topics to explore that bring additional insight. There is an extensive index and bibliography.

The Foundations of Geometry and the Non-Euclidean Plane

The Foundations of Geometry and the Non-Euclidean Plane
Title The Foundations of Geometry and the Non-Euclidean Plane PDF eBook
Author G.E. Martin
Publisher Springer Science & Business Media
Pages 525
Release 2012-12-06
Genre Mathematics
ISBN 1461257255

Download The Foundations of Geometry and the Non-Euclidean Plane Book in PDF, Epub and Kindle

This book is a text for junior, senior, or first-year graduate courses traditionally titled Foundations of Geometry and/or Non Euclidean Geometry. The first 29 chapters are for a semester or year course on the foundations of geometry. The remaining chap ters may then be used for either a regular course or independent study courses. Another possibility, which is also especially suited for in-service teachers of high school geometry, is to survey the the fundamentals of absolute geometry (Chapters 1 -20) very quickly and begin earnest study with the theory of parallels and isometries (Chapters 21 -30). The text is self-contained, except that the elementary calculus is assumed for some parts of the material on advanced hyperbolic geometry (Chapters 31 -34). There are over 650 exercises, 30 of which are 10-part true-or-false questions. A rigorous ruler-and-protractor axiomatic development of the Euclidean and hyperbolic planes, including the classification of the isometries of these planes, is balanced by the discussion about this development. Models, such as Taxicab Geometry, are used exten sively to illustrate theory. Historical aspects and alternatives to the selected axioms are prominent. The classical axiom systems of Euclid and Hilbert are discussed, as are axiom systems for three and four-dimensional absolute geometry and Pieri's system based on rigid motions. The text is divided into three parts. The Introduction (Chapters 1 -4) is to be read as quickly as possible and then used for ref erence if necessary.

Euclidean and Non-Euclidean Geometry International Student Edition

Euclidean and Non-Euclidean Geometry International Student Edition
Title Euclidean and Non-Euclidean Geometry International Student Edition PDF eBook
Author Patrick J. Ryan
Publisher Cambridge University Press
Pages 237
Release 2009-09-04
Genre Mathematics
ISBN 0521127076

Download Euclidean and Non-Euclidean Geometry International Student Edition Book in PDF, Epub and Kindle

This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic.

Introduction to Hyperbolic Geometry

Introduction to Hyperbolic Geometry
Title Introduction to Hyperbolic Geometry PDF eBook
Author Arlan Ramsay
Publisher Springer Science & Business Media
Pages 300
Release 2013-03-09
Genre Mathematics
ISBN 1475755856

Download Introduction to Hyperbolic Geometry Book in PDF, Epub and Kindle

This book is an introduction to hyperbolic and differential geometry that provides material in the early chapters that can serve as a textbook for a standard upper division course on hyperbolic geometry. For that material, the students need to be familiar with calculus and linear algebra and willing to accept one advanced theorem from analysis without proof. The book goes well beyond the standard course in later chapters, and there is enough material for an honors course, or for supplementary reading. Indeed, parts of the book have been used for both kinds of courses. Even some of what is in the early chapters would surely not be nec essary for a standard course. For example, detailed proofs are given of the Jordan Curve Theorem for Polygons and of the decomposability of poly gons into triangles, These proofs are included for the sake of completeness, but the results themselves are so believable that most students should skip the proofs on a first reading. The axioms used are modern in character and more "user friendly" than the traditional ones. The familiar real number system is used as an in gredient rather than appearing as a result of the axioms. However, it should not be thought that the geometric treatment is in terms of models: this is an axiomatic approach that is just more convenient than the traditional ones.

Introduction to Complex Hyperbolic Spaces

Introduction to Complex Hyperbolic Spaces
Title Introduction to Complex Hyperbolic Spaces PDF eBook
Author Serge Lang
Publisher Springer Science & Business Media
Pages 278
Release 2013-03-09
Genre Mathematics
ISBN 1475719450

Download Introduction to Complex Hyperbolic Spaces Book in PDF, Epub and Kindle

Since the appearance of Kobayashi's book, there have been several re sults at the basic level of hyperbolic spaces, for instance Brody's theorem, and results of Green, Kiernan, Kobayashi, Noguchi, etc. which make it worthwhile to have a systematic exposition. Although of necessity I re produce some theorems from Kobayashi, I take a different direction, with different applications in mind, so the present book does not super sede Kobayashi's. My interest in these matters stems from their relations with diophan tine geometry. Indeed, if X is a projective variety over the complex numbers, then I conjecture that X is hyperbolic if and only if X has only a finite number of rational points in every finitely generated field over the rational numbers. There are also a number of subsidiary conjectures related to this one. These conjectures are qualitative. Vojta has made quantitative conjectures by relating the Second Main Theorem of Nevan linna theory to the theory of heights, and he has conjectured bounds on heights stemming from inequalities having to do with diophantine approximations and implying both classical and modern conjectures. Noguchi has looked at the function field case and made substantial progress, after the line started by Grauert and Grauert-Reckziegel and continued by a recent paper of Riebesehl. The book is divided into three main parts: the basic complex analytic theory, differential geometric aspects, and Nevanlinna theory. Several chapters of this book are logically independent of each other.