Fundamentals of Earthquake-Resistant Construction
Title | Fundamentals of Earthquake-Resistant Construction PDF eBook |
Author | Ellis L. Krinitzsky |
Publisher | John Wiley & Sons |
Pages | 332 |
Release | 1993-01-12 |
Genre | Technology & Engineering |
ISBN | 9780471839811 |
Written for engineers without a background in seismic design. Provides design standards and parameters, explaining how to interpret and apply them. Examines and recommends procedures to accommodate the enormous forces and variations in effects common to major earthquakes. Covers practical aspects of soil behavior and structural and foundation design. Gives tips on special construction situations: foundations, dams and retaining walls, strengthening existing structures and construction over active faults.
Elements of Earthquake Engineering and Structural Dynamics
Title | Elements of Earthquake Engineering and Structural Dynamics PDF eBook |
Author | André Filiatrault |
Publisher | Presses inter Polytechnique |
Pages | 436 |
Release | 2002 |
Genre | Technology & Engineering |
ISBN | 9782553010217 |
Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena such as earthquakes involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by earthquakes. However, structural engineers must rely on the expertise of other specialists to realize these projects. Thus, this book not only focuses on structural analysis and design, but also discusses other disciplines, such as geology, seismology, and soil dynamics, providing basic knowledge in these areas so that structural engineers can better interact with different specialists when working on earthquake engineering projects."
Earthquake Engineering for Structural Design
Title | Earthquake Engineering for Structural Design PDF eBook |
Author | W.F. Chen |
Publisher | CRC Press |
Pages | 264 |
Release | 2005-11-02 |
Genre | Technology & Engineering |
ISBN | 1420037145 |
Many important advances in designing earthquake-resistant structures have occurred over the last several years. Civil engineers need an authoritative source of information that reflects the issues that are unique to the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, Earthquake Eng
Fundamentals of Earthquake Engineering
Title | Fundamentals of Earthquake Engineering PDF eBook |
Author | Amr S. Elnashai |
Publisher | John Wiley & Sons |
Pages | 493 |
Release | 2015-07-21 |
Genre | Science |
ISBN | 1118700473 |
Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition combines aspects of engineering seismology, structural and geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to earthquake ground motion, from the seismic source to the evaluation of actions and deformation required for design, and culminating with probabilistic fragility analysis that applies to individual as well as groups of buildings. Basic concepts for accounting for the effects of soil-structure interaction effects in seismic design and assessment are also provided in this second edition. The nature of earthquake risk assessment is inherently multi-disciplinary. Whereas this book addresses only structural safety assessment and design, the problem is cast in its appropriate context by relating structural damage states to societal consequences and expectations, through the fundamental response quantities of stiffness, strength and ductility. This new edition includes material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, effects of soil-structure interaction, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation, definition of performance limit states, fragility relationships derivation, features and effects of underlying soil, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. Key features: Unified and novel approach: from source to fragility Clear conceptual framework for structural response analysis, earthquake input characterization, modelling of soil-structure interaction and derivation of fragility functions Theory and relevant practical applications are merged within each chapter Contains a new chapter on the derivation of fragility Accompanied by a website containing illustrative slides, problems with solutions and worked-through examples Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition is designed to support graduate teaching and learning, introduce practising structural and geotechnical engineers to earthquake analysis and design problems, as well as being a reference book for further studies.
Fundamentals of Earthquake Engineering
Title | Fundamentals of Earthquake Engineering PDF eBook |
Author | Amr S. Elnashai |
Publisher | John Wiley & Sons |
Pages | 493 |
Release | 2015-09-28 |
Genre | Science |
ISBN | 1118678923 |
Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition combines aspects of engineering seismology, structural and geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to earthquake ground motion, from the seismic source to the evaluation of actions and deformation required for design, and culminating with probabilistic fragility analysis that applies to individual as well as groups of buildings. Basic concepts for accounting for the effects of soil-structure interaction effects in seismic design and assessment are also provided in this second edition. The nature of earthquake risk assessment is inherently multi-disciplinary. Whereas this book addresses only structural safety assessment and design, the problem is cast in its appropriate context by relating structural damage states to societal consequences and expectations, through the fundamental response quantities of stiffness, strength and ductility. This new edition includes material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, effects of soil-structure interaction, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation, definition of performance limit states, fragility relationships derivation, features and effects of underlying soil, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. Key features: Unified and novel approach: from source to fragility Clear conceptual framework for structural response analysis, earthquake input characterization, modelling of soil-structure interaction and derivation of fragility functions Theory and relevant practical applications are merged within each chapter Contains a new chapter on the derivation of fragility Accompanied by a website containing illustrative slides, problems with solutions and worked-through examples Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition is designed to support graduate teaching and learning, introduce practising structural and geotechnical engineers to earthquake analysis and design problems, as well as being a reference book for further studies.
Earthquake-Resistant Structures
Title | Earthquake-Resistant Structures PDF eBook |
Author | Mohiuddin Ali Khan |
Publisher | Butterworth-Heinemann |
Pages | 437 |
Release | 2013-03-18 |
Genre | Technology & Engineering |
ISBN | 0080949444 |
Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by them. These disasters have created a new awareness about the disaster preparedness and mitigation. Before a building, utility system, or transportation structure is built, engineers spend a great deal of time analyzing those structures to make sure they will perform reliably under seismic and other loads. The purpose of this book is to provide structural engineers with tools and information to improve current building and bridge design and construction practices and enhance their sustainability during and after seismic events. In this book, Khan explains the latest theory, design applications and Code Provisions. Earthquake-Resistant Structures features seismic design and retrofitting techniques for low and high raise buildings, single and multi-span bridges, dams and nuclear facilities. The author also compares and contrasts various seismic resistant techniques in USA, Russia, Japan, Turkey, India, China, New Zealand, and Pakistan. - Written by a world renowned author and educator - Seismic design and retrofitting techniques for all structures - Tools improve current building and bridge designs - Latest methods for building earthquake-resistant structures - Combines physical and geophysical science with structural engineering
Vibration of Buildings to Wind and Earthquake Loads
Title | Vibration of Buildings to Wind and Earthquake Loads PDF eBook |
Author | T. Balendra |
Publisher | Springer Science & Business Media |
Pages | 156 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 1447120558 |
Recent advances in the development of high strength materials, coupled with more advanced computational methods and design procedures, have led to a new generation of tall and slender buildings. These structures are very sensitive to the most common dynamic loads; wind and earthquakes. The primary requirement for a successful design is to provide safety while taking into account serviceability requirements. This book provides a well-balanced and broad coverage of the information needed for the design of structural systems for wind- and earthquake-resistant buildings. It covers topics such as the basic concepts in structural dynamics and structural systems, the assessment of wind and earthquake loads acting on the system, the evaluation of the system response to such dynamic loads and the design for extreme loading. The text is generously illustrated and supported by numerical examples and will be of great interest to practising engineers and researchers in structural, civil and design engineering and also to architects. The author has drawn on his experience as a teacher, researcher and consultant.