Fundamentals of Descriptive Statistics
Title | Fundamentals of Descriptive Statistics PDF eBook |
Author | Zealure C Holcomb |
Publisher | Routledge |
Pages | 95 |
Release | 2016-09-13 |
Genre | Psychology |
ISBN | 1351970321 |
• Do your students need to organize and summarize data for term projects? Will they need to perform these tasks on the job? This book gives them thorough preparation. • In twelve short chapters, your students will learn the purposes of descriptive statistics, their calculation, and proper interpretation. • Actual data on the emotional health of foster-care adolescents are used throughout the book to illustrate various ways of deriving meaning from the data with descriptive statistics. Other interesting examples are also included. • Computational procedures are illustrated with step-by-step, easy-to-follow examples. • End-of-chapter exercises provide ample practice for students to master both computations and statistical concepts. • Eliminates the need for students to buy a traditional statistics book that emphasizes inferential statistics. • Thoroughly field-tested for student comprehension. • This book will please you and your students with its clarity of presentation. • Outstanding supplement for students who need to describe term project data.
Illustrating Statistical Procedures: Finding Meaning in Quantitative Data
Title | Illustrating Statistical Procedures: Finding Meaning in Quantitative Data PDF eBook |
Author | Ray W. Cooksey |
Publisher | Springer Nature |
Pages | 752 |
Release | 2020-05-14 |
Genre | Mathematics |
ISBN | 9811525374 |
This book occupies a unique position in the field of statistical analysis in the behavioural and social sciences in that it targets learners who would benefit from learning more conceptually and less computationally about statistical procedures and the software packages that can be used to implement them. This book provides a comprehensive overview of this important research skill domain with an emphasis on visual support for learning and better understanding. The primary focus is on fundamental concepts, procedures and interpretations of statistical analyses within a single broad illustrative research context. The book covers a wide range of descriptive, correlational and inferential statistical procedures as well as more advanced procedures not typically covered in introductory and intermediate statistical texts. It is an ideal reference for postgraduate students as well as for researchers seeking to broaden their conceptual exposure to what is possible in statistical analysis.
Understanding and Evaluating Research
Title | Understanding and Evaluating Research PDF eBook |
Author | Sue L. T. McGregor |
Publisher | SAGE Publications |
Pages | 880 |
Release | 2017-10-25 |
Genre | Social Science |
ISBN | 1506350976 |
Understanding and Evaluating Research: A Critical Guide shows students how to be critical consumers of research and to appreciate the power of methodology as it shapes the research question, the use of theory in the study, the methods used, and how the outcomes are reported. The book starts with what it means to be a critical and uncritical reader of research, followed by a detailed chapter on methodology, and then proceeds to a discussion of each component of a research article as it is informed by the methodology. The book encourages readers to select an article from their discipline, learning along the way how to assess each component of the article and come to a judgment of its rigor or quality as a scholarly report.
Fundamentals of Applied Probability and Random Processes
Title | Fundamentals of Applied Probability and Random Processes PDF eBook |
Author | Oliver Ibe |
Publisher | Academic Press |
Pages | 457 |
Release | 2014-06-13 |
Genre | Mathematics |
ISBN | 0128010355 |
The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. - Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings - Expands readers' understanding of disruptive statistics in a new chapter (chapter 8) - Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. - Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).
Statistics in a Nutshell
Title | Statistics in a Nutshell PDF eBook |
Author | Sarah Boslaugh |
Publisher | "O'Reilly Media, Inc." |
Pages | 595 |
Release | 2012-11-15 |
Genre | Computers |
ISBN | 1449316824 |
A clear and concise introduction and reference for anyone new to the subject of statistics.
Learn R for Applied Statistics
Title | Learn R for Applied Statistics PDF eBook |
Author | Eric Goh Ming Hui |
Publisher | Apress |
Pages | 254 |
Release | 2018-11-30 |
Genre | Computers |
ISBN | 1484242009 |
Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R’s syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will LearnDiscover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.
The R Software
Title | The R Software PDF eBook |
Author | Pierre Lafaye de Micheaux |
Publisher | Springer Science & Business |
Pages | 654 |
Release | 2014-05-13 |
Genre | Computers |
ISBN | 1461490200 |
The contents of The R Software are presented so as to be both comprehensive and easy for the reader to use. Besides its application as a self-learning text, this book can support lectures on R at any level from beginner to advanced. This book can serve as a textbook on R for beginners as well as more advanced users, working on Windows, MacOs or Linux OSes. The first part of the book deals with the heart of the R language and its fundamental concepts, including data organization, import and export, various manipulations, documentation, plots, programming and maintenance. The last chapter in this part deals with oriented object programming as well as interfacing R with C/C++ or Fortran, and contains a section on debugging techniques. This is followed by the second part of the book, which provides detailed explanations on how to perform many standard statistical analyses, mainly in the Biostatistics field. Topics from mathematical and statistical settings that are included are matrix operations, integration, optimization, descriptive statistics, simulations, confidence intervals and hypothesis testing, simple and multiple linear regression, and analysis of variance. Each statistical chapter in the second part relies on one or more real biomedical data sets, kindly made available by the Bordeaux School of Public Health (Institut de Santé Publique, d'Épidémiologie et de Développement - ISPED) and described at the beginning of the book. Each chapter ends with an assessment section: memorandum of most important terms, followed by a section of theoretical exercises (to be done on paper), which can be used as questions for a test. Moreover, worksheets enable the reader to check his new abilities in R. Solutions to all exercises and worksheets are included in this book.