Fundamentals in Information Theory and Coding

Fundamentals in Information Theory and Coding
Title Fundamentals in Information Theory and Coding PDF eBook
Author Monica Borda
Publisher Springer Science & Business Media
Pages 504
Release 2011-05-27
Genre Technology & Engineering
ISBN 3642203477

Download Fundamentals in Information Theory and Coding Book in PDF, Epub and Kindle

The work introduces the fundamentals concerning the measure of discrete information, the modeling of discrete sources without and with a memory, as well as of channels and coding. The understanding of the theoretical matter is supported by many examples. One particular emphasis is put on the explanation of Genomic Coding. Many examples throughout the book are chosen from this particular area and several parts of the book are devoted to this exciting implication of coding.

Fundamentals of Information Theory and Coding Design

Fundamentals of Information Theory and Coding Design
Title Fundamentals of Information Theory and Coding Design PDF eBook
Author Roberto Togneri
Publisher CRC Press
Pages 394
Release 2003-01-13
Genre Mathematics
ISBN 0203998103

Download Fundamentals of Information Theory and Coding Design Book in PDF, Epub and Kindle

Books on information theory and coding have proliferated over the last few years, but few succeed in covering the fundamentals without losing students in mathematical abstraction. Even fewer build the essential theoretical framework when presenting algorithms and implementation details of modern coding systems. Without abandoning the theoret

Information Theory and Network Coding

Information Theory and Network Coding
Title Information Theory and Network Coding PDF eBook
Author Raymond W. Yeung
Publisher Springer Science & Business Media
Pages 592
Release 2008-09-10
Genre Computers
ISBN 0387792333

Download Information Theory and Network Coding Book in PDF, Epub and Kindle

This book is an evolution from my book A First Course in Information Theory published in 2002 when network coding was still at its infancy. The last few years have witnessed the rapid development of network coding into a research ?eld of its own in information science. With its root in infor- tion theory, network coding has not only brought about a paradigm shift in network communications at large, but also had signi?cant in?uence on such speci?c research ?elds as coding theory, networking, switching, wireless c- munications,distributeddatastorage,cryptography,andoptimizationtheory. While new applications of network coding keep emerging, the fundamental - sults that lay the foundation of the subject are more or less mature. One of the main goals of this book therefore is to present these results in a unifying and coherent manner. While the previous book focused only on information theory for discrete random variables, the current book contains two new chapters on information theory for continuous random variables, namely the chapter on di?erential entropy and the chapter on continuous-valued channels. With these topics included, the book becomes more comprehensive and is more suitable to be used as a textbook for a course in an electrical engineering department.

Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms
Title Information Theory, Inference and Learning Algorithms PDF eBook
Author David J. C. MacKay
Publisher Cambridge University Press
Pages 694
Release 2003-09-25
Genre Computers
ISBN 9780521642989

Download Information Theory, Inference and Learning Algorithms Book in PDF, Epub and Kindle

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Elements of Information Theory

Elements of Information Theory
Title Elements of Information Theory PDF eBook
Author Thomas M. Cover
Publisher John Wiley & Sons
Pages 788
Release 2012-11-28
Genre Computers
ISBN 1118585771

Download Elements of Information Theory Book in PDF, Epub and Kindle

The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.

Network Information Theory

Network Information Theory
Title Network Information Theory PDF eBook
Author Abbas El Gamal
Publisher Cambridge University Press
Pages 666
Release 2011-12-08
Genre Technology & Engineering
ISBN 1139503146

Download Network Information Theory Book in PDF, Epub and Kindle

This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.

An Introduction to Single-User Information Theory

An Introduction to Single-User Information Theory
Title An Introduction to Single-User Information Theory PDF eBook
Author Fady Alajaji
Publisher Springer
Pages 333
Release 2018-04-24
Genre Mathematics
ISBN 9811080011

Download An Introduction to Single-User Information Theory Book in PDF, Epub and Kindle

This book presents a succinct and mathematically rigorous treatment of the main pillars of Shannon’s information theory, discussing the fundamental concepts and indispensable results of Shannon’s mathematical theory of communications. It includes five meticulously written core chapters (with accompanying problems), emphasizing the key topics of information measures; lossless and lossy data compression; channel coding; and joint source-channel coding for single-user (point-to-point) communications systems. It also features two appendices covering necessary background material in real analysis and in probability theory and stochastic processes. The book is ideal for a one-semester foundational course on information theory for senior undergraduate and entry-level graduate students in mathematics, statistics, engineering, and computing and information sciences. A comprehensive instructor’s solutions manual is available.