Fundamentals and Applications of Complex Analysis
Title | Fundamentals and Applications of Complex Analysis PDF eBook |
Author | Harold Cohen |
Publisher | Springer Science & Business Media |
Pages | 442 |
Release | 2003-07-31 |
Genre | Mathematics |
ISBN | 9780306477485 |
This book is intended to serve as a text for first and second year courses in single variable complex analysis. The material that is appropriate for more advanced study is developed from elementary material. The concepts are illustrated with large numbers of examples, many of which involve problems students encounter in other courses. For example, students who have taken an introductory physics course will have encountered analysis of simple AC circuits. This text revisits such analysis using complex numbers. Cauchy's residue theorem is used to evaluate many types of definite integrals that students are introduced to in the beginning calculus sequence. Methods of conformal mapping are used to solve problems in electrostatics. The book contains material that is not considered in other popular complex analysis texts.
Fundamentals of Complex Analysis with Applications to Engineering and Science (Classic Version)
Title | Fundamentals of Complex Analysis with Applications to Engineering and Science (Classic Version) PDF eBook |
Author | Edward Saff |
Publisher | Pearson |
Pages | 0 |
Release | 2017-02-13 |
Genre | Functions of complex variables |
ISBN | 9780134689487 |
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. This is the best seller in this market. It provides a comprehensive introduction to complex variable theory and its applications to current engineering problems. It is designed to make the fundamentals of the subject more easily accessible to students who have little inclination to wade through the rigors of the axiomatic approach. Modeled after standard calculus books--both in level of exposition and layout--it incorporates physical applications throughout the presentation, so that the mathematical methodology appears less sterile to engineering students.
Complex Analysis with Applications in Science and Engineering
Title | Complex Analysis with Applications in Science and Engineering PDF eBook |
Author | Harold Cohen |
Publisher | Springer Science & Business Media |
Pages | 487 |
Release | 2010-04-23 |
Genre | Mathematics |
ISBN | 0387730583 |
The Second Edition of this acclaimed text helps you apply theory to real-world applications in mathematics, physics, and engineering. It easily guides you through complex analysis with its excellent coverage of topics such as series, residues, and the evaluation of integrals; multi-valued functions; conformal mapping; dispersion relations; and analytic continuation. Worked examples plus a large number of assigned problems help you understand how to apply complex concepts and build your own skills by putting them into practice. This edition features many new problems, revised sections, and an entirely new chapter on analytic continuation.
Complex Analysis with Applications to Number Theory
Title | Complex Analysis with Applications to Number Theory PDF eBook |
Author | Tarlok Nath Shorey |
Publisher | Springer Nature |
Pages | 287 |
Release | 2020-11-13 |
Genre | Mathematics |
ISBN | 9811590974 |
The book discusses major topics in complex analysis with applications to number theory. This book is intended as a text for graduate students of mathematics and undergraduate students of engineering, as well as to researchers in complex analysis and number theory. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two and three manifolds and number theory. In additional to solved examples and problems, the book covers most of the topics of current interest, such as Cauchy theorems, Picard’s theorems, Riemann–Zeta function, Dirichlet theorem, gamma function and harmonic functions.
A Course in Complex Analysis
Title | A Course in Complex Analysis PDF eBook |
Author | Wolfgang Fischer |
Publisher | Springer Science & Business Media |
Pages | 280 |
Release | 2011-10-21 |
Genre | Mathematics |
ISBN | 3834886610 |
This carefully written textbook is an introduction to the beautiful concepts and results of complex analysis. It is intended for international bachelor and master programmes in Germany and throughout Europe; in the Anglo-American system of university education the content corresponds to a beginning graduate course. The book presents the fundamental results and methods of complex analysis and applies them to a study of elementary and non-elementary functions (elliptic functions, Gamma- and Zeta function including a proof of the prime number theorem ...) and – a new feature in this context! – to exhibiting basic facts in the theory of several complex variables. Part of the book is a translation of the authors’ German text “Einführung in die komplexe Analysis”; some material was added from the by now almost “classical” text “Funktionentheorie” written by the authors, and a few paragraphs were newly written for special use in a master’s programme.
Fundamentals of Complex Analysis
Title | Fundamentals of Complex Analysis PDF eBook |
Author | K. K. Dube |
Publisher | I. K. International Pvt Ltd |
Pages | 293 |
Release | 2013-12-30 |
Genre | Calculus |
ISBN | 9380026021 |
The book divided in ten chapters deals with: " Algebra of complex numbers and its various geometrical properties, properties of polar form of complex numbers and regions in the complex plane. " Limit, continuity, differentiability. " Different kinds of complex valued functions. " Different types of transformations. " Conformal mappings of different functions. " Properties of bilinear and special bilinear transformation. " Line integrals, their properties and different theorems. " Sequences and series, Power series, Zero s of functions, residues and residue theorem, meromorphic functions, different kinds of singularities. " Evaluation of real integrals. " Analytic continuation, construction of harmonic functions, infinite product, their properties and Gamma function. " Schwarz-Christoffel transformations, mapping by multi valued functions, entire functions. " Jenson s theorem and Poisson-Jenson theorem. The book is designed as a textbook for UG and PG students of science as well as engineering
Complex Analysis
Title | Complex Analysis PDF eBook |
Author | Elias M. Stein |
Publisher | Princeton University Press |
Pages | 398 |
Release | 2010-04-22 |
Genre | Mathematics |
ISBN | 1400831156 |
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.