Fundamental Controls on Fluid Flow in Carbonates
Title | Fundamental Controls on Fluid Flow in Carbonates PDF eBook |
Author | S.M. Agar |
Publisher | Geological Society of London |
Pages | 473 |
Release | 2015-02-02 |
Genre | Science |
ISBN | 1862396590 |
This volume highlights key challenges for fluid-flow prediction in carbonate reservoirs, the approaches currently employed to address these challenges and developments in fundamental science and technology. The papers span methods and case studies that highlight workflows and emerging technologies in the fields of geology, geophysics, petrophysics, reservoir modelling and computer science. Topics include: detailed pore-scale studies that explore fundamental processes and applications of imaging and flow modelling at the pore scale; case studies of diagenetic processes with complementary perspectives from reactive transport modelling; novel methods for rock typing; petrophysical studies that investigate the impact of diagenesis and fault-rock properties on acoustic signatures; mechanical modelling and seismic imaging of faults in carbonate rocks; modelling geological influences on seismic anisotropy; novel approaches to geological modelling; methods to represent key geological details in reservoir simulations and advances in computer visualization, analytics and interactions for geoscience and engineering.
Reservoir Quality of Clastic and Carbonate Rocks
Title | Reservoir Quality of Clastic and Carbonate Rocks PDF eBook |
Author | P.J. Armitage |
Publisher | Geological Society of London |
Pages | 453 |
Release | 2018-06-18 |
Genre | Science |
ISBN | 1786201399 |
Reservoir quality is studied using a wide range of similar techniques in both sandstones and carbonates. Sandstone and carbonate reservoir quality both benefit from the study of modern analogues and experiments, but modelling approaches are currently quite different for these two types of reservoirs. There are many common controls on sandstone and carbonate reservoir quality, but also distinct differences due primarily to mineralogy. Numerous controversies remain including the question of oil inhibition, the key control on pressure solution and geochemical flux of material to or from reservoirs. This collection of papers contains case-study-based examples of sandstone and carbonate reservoir quality prediction as well as modern analogue, outcrop analogue, modelling and advanced analytical approaches.
Pore Scale Geochemical Processes
Title | Pore Scale Geochemical Processes PDF eBook |
Author | Carl Steefel |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 496 |
Release | 2015-09-25 |
Genre | Science |
ISBN | 1501502077 |
This RiMG (Reviews in Mineralogy & Geochemistry) volume includes contributions that review experimental, characterization, and modeling advances in our understanding of pore-scale geochemical processes. The volume had its origins in a special theme session at the 2015 Goldschmidt Conference in Prague. From a diversity of pore-scale topics that ranged from multi-scale characterization to modeling, this work summarizes the state-of-the-science in this subject. Topics include: modification of thermodynamics and kinetics in small pores. chemo-mechanical processes and how they affect porosity evolution in geological media. small angle neutron scattering (SANS) techniques. how isotopic gradients across fluid–mineral boundaries can develop and how these provide insight into pore-scale processes. Information on an important class of models referred to as "pore network" and much more. The material in this book is accessible for graduate students, researchers, and professionals in the earth, material, environmental, hydrological, and biological sciences. The pore scale is readily recognizable to geochemists, and yet in the past it has not received a great deal of attention as a distinct scale or environment that is associated with its own set of questions and challenges. Is the pore scale merely an environment in which smaller scale (molecular) processes aggregate, or are there emergent phenomena unique to this scale? Is it simply a finer-grained version of the "continuum" scale that is addressed in larger-scale models and interpretations? The scale is important because it accounts for the pore architecture within which such diverse processes as multi-mineral reaction networks, microbial community interaction, and transport play out, giving rise to new geochemical behavior that might not be understood or predicted by considering smaller or larger scales alone.
Hypogene Karst Regions and Caves of the World
Title | Hypogene Karst Regions and Caves of the World PDF eBook |
Author | Alexander Klimchouk |
Publisher | Springer |
Pages | 903 |
Release | 2017-08-17 |
Genre | Science |
ISBN | 3319533487 |
This book illustrates the diversity of hypogene speleogenetic processes and void-conduit patterns depending on variations of the geological environments by presenting regional and cave-specific case studies. The cases include both well-known and newly recognized hypogene karst regions and caves of the world. They all focus on geological, hydrogeological, geodynamical and evolutionary contexts of hypogene speleogenesis. The last decade has witnessed the boost in recognition of the possibility, global occurrence, and practical importance of hypogene karstification (speleogenesis), i.e. the development of solutional porosity and permeability by upwelling flow, independent of recharge from the overlying or immediately adjacent surface. Hypogene karst has been identified and documented in many regions where it was previously overlooked or misinterpreted. The book enriches the basis for generalization and categorization of hypogene karst and thus improves our ability to adequately model hypogene karstification and predict related porosity and permeability. It is a book which benefits every researcher, student, and practitioner dealing with karst.
Seismic Characterization of Carbonate Platforms and Reservoirs
Title | Seismic Characterization of Carbonate Platforms and Reservoirs PDF eBook |
Author | J. Hendry |
Publisher | Geological Society of London |
Pages | 293 |
Release | 2021-08-17 |
Genre | Science |
ISBN | 1786205394 |
Modern seismic data have become an essential toolkit for studying carbonate platforms and reservoirs in impressive detail. Whilst driven primarily by oil and gas exploration and development, data sharing and collaboration are delivering fundamental geological knowledge on carbonate systems, revealing platform geomorphologies and how their evolution on millennial time scales, as well as kilometric length scales, was forced by long-term eustatic, oceanographic or tectonic factors. Quantitative interrogation of modern seismic attributes in carbonate reservoirs permits flow units and barriers arising from depositional and diagenetic processes to be imaged and extrapolated between wells. This volume reviews the variety of carbonate platform and reservoir characteristics that can be interpreted from modern seismic data, illustrating the benefits of creative interaction between geophysical and carbonate geological experts at all stages of a seismic campaign. Papers cover carbonate exploration, including the uniquely challenging South Atlantic pre-salt reservoirs, seismic modelling of carbonates, and seismic indicators of fluid flow and diagenesis.
Science of Carbon Storage in Deep Saline Formations
Title | Science of Carbon Storage in Deep Saline Formations PDF eBook |
Author | Pania Newell |
Publisher | Elsevier |
Pages | 447 |
Release | 2018-09-06 |
Genre | Science |
ISBN | 0128127538 |
Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage. - Includes the underlying scientific research, as well as the risks associated with geological carbon storage - Covers the topic of geological carbon storage from various disciplines, addressing the multi-scale and multi-physics aspects of geological carbon storage - Organized by discipline for ease of navigation
Modelling the Evolution of Natural Fracture Networks
Title | Modelling the Evolution of Natural Fracture Networks PDF eBook |
Author | Michael John Welch |
Publisher | Springer Nature |
Pages | 237 |
Release | 2020-09-18 |
Genre | Technology & Engineering |
ISBN | 3030524140 |
This book presents and describes an innovative method to simulate the growth of natural fractural networks in different geological environments, based on their geological history and fundamental geomechanical principles. The book develops techniques to simulate the growth and interaction of large populations of layer-bound fracture directly, based on linear elastic fracture mechanics and subcritical propagation theory. It demonstrates how to use these techniques to model the nucleation, propagation and interaction of layer-bound fractures in different orientations around large scale geological structures, based on the geological history of the structures. It also explains how to use these techniques to build more accurate discrete fracture network (DFN) models at a reasonable computational cost. These models can explain many of the properties of natural fracture networks observed in outcrops, using actual outcrop examples. Finally, the book demonstrates how it can be incorporated into flow modelling workflows using subsurface examples from the hydrocarbon and geothermal industries. Modelling the Evolution of Natural Fracture Networks will be of interest to anyone curious about understanding and predicting the evolution of complex natural fracture networks across large geological structures. It will be helpful to those modelling fluid flow through fractures, or the geomechanical impact of fracture networks, in the hydrocarbon, geothermal, CO2 sequestration, groundwater and engineering industries.