Functional Materials From Lignin: Methods And Advances
Title | Functional Materials From Lignin: Methods And Advances PDF eBook |
Author | Xian Jun Loh |
Publisher | World Scientific Publishing |
Pages | 231 |
Release | 2018-06-08 |
Genre | Technology & Engineering |
ISBN | 1786345226 |
Lignin is one of the most abundant plant-derived feedstock on earth and qualifies as a renewable material. However, lignin is widely recognized as waste byproduct of the cellulosic ethanol and pulp and paper industry. How to properly modify lignin and develop it into functional polymers is a huge challenge, but an attractive research topic in both industry and academia.This book brings together leading engineering approaches to address the challenges of lignin valorization. It presents the chemistry and properties of different types of lignin, and explores the cutting-edge approaches of lignin modifications. Unlike any existing texts, this book not only summarizes the traditional ways of using lignin, but also presents various potential applications of lignin materials together with advanced processing techniques.The basis of lignin (its chemistry, types and properties) is described, as are different approaches to modify it. The features of lignin and its copolymers are explored and aligned with their potential applications. In addition to the carbon materials from lignin, the advanced fabrication approaches to engineer lignin-based micro/nano-structural materials are summarized.
Handbook of Biomass Valorization for Industrial Applications
Title | Handbook of Biomass Valorization for Industrial Applications PDF eBook |
Author | Shahid ul-Islam |
Publisher | John Wiley & Sons |
Pages | 555 |
Release | 2022-01-05 |
Genre | Science |
ISBN | 1119818796 |
HANDBOOK of BIOMASS VALORIZATION for INDUSTRIAL APPLICATIONS The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors. Industrial sectors, such as food, textiles, petrochemicals and pharmaceuticals, generate massive amounts of waste each year, the disposal of which has become a major issue worldwide. As a result, implementing a circular economy that employs sustainable practices in waste management is critical for any industry. Moreover, fossil fuels, which are the primary sources of fuel in the transportation sector, are also being rapidly depleted at an alarming rate. Therefore, to combat these global issues without increasing our carbon footprint, we must look for renewable resources to produce chemicals and biomaterials. In that context, agricultural waste materials are gaining popularity as cost-effective and abundantly available alternatives to fossil resources for the production of a variety of value-added products, including renewable fuels, fuel components, and fuel additives. Handbook of Biomass Valorization for Industrial Applications investigates current and emerging feedstocks, as well as provides in-depth technical information on advanced catalytic processes and technologies that enable the development of all possible alternative energy sources. The 22 chapters of this book comprehensively cover the valorization of agricultural wastes and their various uses in value-added applications like energy, biofuels, fertilizers, and wastewater treatment. Audience The book is intended for a very broad audience working in the fields of materials sciences, chemical engineering, nanotechnology, energy, environment, chemistry, etc. This book will be an invaluable reference source for the libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in the field of valorization of biomass.
Lignin-based Materials for Biomedical Applications
Title | Lignin-based Materials for Biomedical Applications PDF eBook |
Author | Patrícia Figueiredo |
Publisher | Elsevier |
Pages | 450 |
Release | 2021-07-26 |
Genre | Technology & Engineering |
ISBN | 0128203048 |
Lignin-based Materials for Biomedical Applications: Preparation, Characterization, and Implementation explores the emerging area of lignin-based materials as a platform for advanced biomedical applications, guiding the reader from source through to implementation. The first part of the book introduces the basics of lignin, including extraction methods, chemical modifications, structure and composition, and properties that make lignin suitable for biomedical applications. In addition, structural characterization techniques are described in detail. The next chapters focus on the preparation of lignin-based materials for biomedical applications, presenting methodologies for lignin-based nanoparticles, hydrogels, aerogels, and nanofibers, and providing in-depth coverage of lignin-based materials with specific properties—including antioxidant properties, UV absorbing capability, antimicrobial properties, and colloidal particles with tailored properties—and applications, such as drug and gene delivery, and tissue engineering. Finally, future perspectives and possible new applications are considered. This is an essential reference for all those with an interest in lignin-based materials and their biomedical applications, including researchers and advanced students across bio-based polymers, polymer science, polymer chemistry, biomaterials, nanotechnology, materials science and engineering, drug delivery, and biomedical engineering, as well as industrial R&D and scientists involved with bio-based polymers, specifically for biomedical applications. - Unlocks the potential of lignin-based materials with advanced properties for cutting-edge applications in areas such as drug delivery, gene delivery and tissue engineering - Presents state-of-the-art methodologies used in the development of lignin-based nanoparticles, hydrogels, aerogels and nanofibers - Explains the fundamentals of lignin, including structure and composition, extraction and isolation methods, types and properties, chemical modifications, and characterization techniques
Lignin Chemistry and Applications
Title | Lignin Chemistry and Applications PDF eBook |
Author | Jin Huang |
Publisher | Elsevier |
Pages | 278 |
Release | 2019-01-30 |
Genre | Technology & Engineering |
ISBN | 0128139633 |
Lignin Chemistry and Application systematically discusses the structure, physical and chemical modification of lignin, along with its application in the field of chemicals and materials. It presents the history of lignin chemistry and lignin-modified materials, describes recent progresses, applications and studies, and prospects the development direction of high value applications of lignin in the field of material science. In addition to covering the basic theories and technologies relating to the research and application of lignin in polymer chemistry and materials science, the book also summarizes the latest applications in rubber, engineering plastics, adhesives, films and hydrogels. - Systematically discusses the structure, physical and chemical modification of lignin and its application in materials - Presents the latest research results in the field of lignin - Indicates the development direction of high value applications of lignin in a range of fields, including petrochemicals, household applications, medicine, agriculture, and more
Lignin and Lignans as Renewable Raw Materials
Title | Lignin and Lignans as Renewable Raw Materials PDF eBook |
Author | Francisco G. Calvo-Flores |
Publisher | John Wiley & Sons |
Pages | 512 |
Release | 2015-08-11 |
Genre | Science |
ISBN | 1118682955 |
As naturally occurring and abundant sources of non-fossil carbon, lignin and lignans offer exciting possibilities as a source of commercially valuable products, moving away from petrochemical-based feedstocks in favour of renewable raw materials. Lignin can be used directly in fields such as agriculture, livestock, soil rehabilitation, bioremediation and the polymer industry, or it can be chemically modified for the fabrication of specialty and high-value chemicals such as resins, adhesives, fuels and greases. Lignin and Lignans as Renewable Raw Materials presents a multidisciplinary overview of the state-of-the-art and future prospects of lignin and lignans. The book discusses the origin, structure, function and applications of both types of compounds, describing the main resources and values of these products as carbon raw materials. Topics covered include: • Structure and physicochemical properties • Lignin detection methods • Biosynthesis of lignin • Isolation methods • Characterization and modification of lignins • Applications of modified and unmodified lignins • Lignans: structure, chemical and biological properties • Future perspectives This book is a comprehensive resource for researchers, scientists and engineers in academia and industry working on new possibilities for the application of renewable raw materials. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs
Lignin in Polymer Composites
Title | Lignin in Polymer Composites PDF eBook |
Author | Omar Faruk |
Publisher | William Andrew |
Pages | 270 |
Release | 2015-10-24 |
Genre | Technology & Engineering |
ISBN | 0323355668 |
Lignin in Polymer Composites presents the latest information on lignin, a natural polymer derived from renewable resources that has great potential as a reinforcement material in composites because it is non-toxic, inexpensive, available in large amounts, and is starting to be deployed in various materials applications due to its advantages over more traditional oil-based materials. This book reviews the state-of-the-art on the topic and their applications to composites, including thermoplastic, thermosets, rubber, foams, bioplastics, nanocomposites, and lignin-based carbon fiber composites. In addition, the book covers critical assessments on the economics of lignin, including a cost-performance analysis that discusses its strengths and weaknesses as a reinforcement material. Finally, the huge potential applications of lignin in industry are explored with respect to its low cost, recyclable properties, and fully biodegradable composites, and the way they apply to the automotive, construction, and packaging industries. - Reviews the state-of-the-art on the topic and their applications to composites, including thermoplastic, thermosets, rubber, foams, bioplastics, nanocomposites, and lignin-based carbon fiber composites - Presents the essential processing and properties information for engineers and materials scientists, enabling the use of lignin in composites - Provides critical insight into the applications and future trends of lignin-based composites, including advantages, shortcomings, and economics - Includes a thorough coverage of extraction, modification, processing, and applications of the material
Chemical Modification, Properties, and Usage of Lignin
Title | Chemical Modification, Properties, and Usage of Lignin PDF eBook |
Author | Thomas Q. Hu |
Publisher | Springer Science & Business Media |
Pages | 292 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 1461506433 |
One of the most significant challenges facing mankind in the twenty-first century is the development of a sustainable global economy. Within the scientific community, this calls for the development of processes and technologies that will allow the sustainable production of materials from renewable natural resources. Plant material, in particular lignin, is one such resource. During the annual production of about 100 million metric tons of chemical wood pulps worldwide, approximately 45 and 2 million metric tons/year of kraft lignin and lignosulfonates, respectively, are also generated. Although lignosulfonates have found many applications outside the pulp and paper industry, the majority of kraft lignin is being used internally as a low-grade fuel for the kraft pulping operation. A surplus of kraft lignin will become available as kraft mills increase their pulp production without expanding the capacity of their recovery boilers that utilize lignin as a fuel. There is a tremendous opportunity and an enormous economic incentive to find better uses of kraft lignin, lignosulfonates and other industriallignins. The pulp and paper industry not only produces an enormous amount of lignins as by products of chemical wood pulps, but it also utilizes about 10 million metric tons of lignin per year as a component of mechanical wood pulps and papers. Mechanical wood pulps, produced in a yield of 90-98% with the retention of lignin, are mainly used to make low-quality, non-permanent papers such as newsprint and telephone directories because of the light-induced photooxidation of lignin and the yellowing of the papers.