Functional Equations and How to Solve Them
Title | Functional Equations and How to Solve Them PDF eBook |
Author | Christopher G. Small |
Publisher | Springer Science & Business Media |
Pages | 139 |
Release | 2007-04-03 |
Genre | Mathematics |
ISBN | 0387489010 |
Many books have been written on the theory of functional equations, but very few help readers solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. Each chapter includes a list of problems associated with the covered material. These vary in difficulty, with the easiest being accessible to any high school student who has read the chapter carefully. The most difficult will challenge students studying for the International Mathematical Olympiad or the Putnam Competition. An appendix provides a springboard for further investigation of the concepts of limits, infinite series and continuity.
Functional Equations and Inequalities with Applications
Title | Functional Equations and Inequalities with Applications PDF eBook |
Author | Palaniappan Kannappan |
Publisher | Springer Science & Business Media |
Pages | 817 |
Release | 2009-06-10 |
Genre | Mathematics |
ISBN | 0387894926 |
Functional Equations and Inequalities with Applications presents a comprehensive, nearly encyclopedic, study of the classical topic of functional equations. This self-contained monograph explores all aspects of functional equations and their applications to related topics, such as differential equations, integral equations, the Laplace transformation, the calculus of finite differences, and many other basic tools in analysis. Each chapter examines a particular family of equations and gives an in-depth study of its applications as well as examples and exercises to support the material.
Functional Analysis, Sobolev Spaces and Partial Differential Equations
Title | Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF eBook |
Author | Haim Brezis |
Publisher | Springer Science & Business Media |
Pages | 600 |
Release | 2010-11-02 |
Genre | Mathematics |
ISBN | 0387709142 |
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Handbook of Functional Equations
Title | Handbook of Functional Equations PDF eBook |
Author | Themistocles M. Rassias |
Publisher | Springer |
Pages | 394 |
Release | 2014-11-21 |
Genre | Mathematics |
ISBN | 1493912860 |
This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with several applications of interdisciplinary nature. The chapters of this handbook focus mainly on both old and recent developments on the equation of homomorphism for square symmetric groupoids, the linear and polynomial functional equations in a single variable, the Drygas functional equation on amenable semigroups, monomial functional equation, the Cauchy–Jensen type mappings, differential equations and differential operators, operational equations and inclusions, generalized module left higher derivations, selections of set-valued mappings, D’Alembert’s functional equation, characterizations of information measures, functional equations in restricted domains, as well as generalized functional stability and fixed point theory.
Functional Equations in Mathematical Analysis
Title | Functional Equations in Mathematical Analysis PDF eBook |
Author | Themistocles M. Rassias |
Publisher | Springer Science & Business Media |
Pages | 744 |
Release | 2011-09-18 |
Genre | Mathematics |
ISBN | 1461400554 |
The stability problem for approximate homomorphisms, or the Ulam stability problem, was posed by S. M. Ulam in the year 1941. The solution of this problem for various classes of equations is an expanding area of research. In particular, the pursuit of solutions to the Hyers-Ulam and Hyers-Ulam-Rassias stability problems for sets of functional equations and ineqalities has led to an outpouring of recent research. This volume, dedicated to S. M. Ulam, presents the most recent results on the solution to Ulam stability problems for various classes of functional equations and inequalities. Comprised of invited contributions from notable researchers and experts, this volume presents several important types of functional equations and inequalities and their applications to problems in mathematical analysis, geometry, physics and applied mathematics. "Functional Equations in Mathematical Analysis" is intended for researchers and students in mathematics, physics, and other computational and applied sciences.
Functional Equations in Several Variables
Title | Functional Equations in Several Variables PDF eBook |
Author | J. Aczél |
Publisher | Cambridge University Press |
Pages | 490 |
Release | 1989 |
Genre | Mathematics |
ISBN | 9780521352765 |
This treatise deals with modern theory of functional equations in several variables and their applications to mathematics, information theory, and the natural, behavioural and social sciences. The authors have chosen to emphasize applications, though not at the expense of theory, so they have kept the prerequisites to a minimum.
Stability of Functional Equations in Several Variables
Title | Stability of Functional Equations in Several Variables PDF eBook |
Author | D.H. Hyers |
Publisher | Springer Science & Business Media |
Pages | 330 |
Release | 1998-09-01 |
Genre | Mathematics |
ISBN | 9780817640248 |
The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.