Interpolation Spaces

Interpolation Spaces
Title Interpolation Spaces PDF eBook
Author J. Bergh
Publisher Springer Science & Business Media
Pages 218
Release 2012-12-06
Genre Mathematics
ISBN 3642664512

Download Interpolation Spaces Book in PDF, Epub and Kindle

The works of Jaak Peetre constitute the main body of this treatise. Important contributors are also J. L. Lions and A. P. Calderon, not to mention several others. We, the present authors, have thus merely compiled and explained the works of others (with the exception of a few minor contributions of our own). Let us mention the origin of this treatise. A couple of years ago, J. Peetre suggested to the second author, J. Lofstrom, writing a book on interpolation theory and he most generously put at Lofstrom's disposal an unfinished manu script, covering parts of Chapter 1-3 and 5 of this book. Subsequently, LOfstrom prepared a first rough, but relatively complete manuscript of lecture notes. This was then partly rewritten and thouroughly revised by the first author, J. Bergh, who also prepared the notes and comment and most of the exercises. Throughout the work, we have had the good fortune of enjoying Jaak Peetre's kind patronage and invaluable counsel. We want to express our deep gratitude to him. Thanks are also due to our colleagues for their support and help. Finally, we are sincerely grateful to Boe1 Engebrand, Lena Mattsson and Birgit Hoglund for their expert typing of our manuscript.

Function Spaces, Interpolation Theory and Related Topics

Function Spaces, Interpolation Theory and Related Topics
Title Function Spaces, Interpolation Theory and Related Topics PDF eBook
Author Michael Cwikel
Publisher Walter de Gruyter
Pages 473
Release 2008-08-22
Genre Mathematics
ISBN 3110198053

Download Function Spaces, Interpolation Theory and Related Topics Book in PDF, Epub and Kindle

This volume contains 16 refereed research articles on function spaces, interpolation theory and related fields. Topics covered: theory of function spaces, Hankel-type and related operators, analysis on bounded symmetric domains, partial differential equations, Green functions, special functions, homogenization theory, Sobolev embeddings, Coxeter groups, spectral theory and wavelets. The book will be of interest to both researchers and graduate students working in interpolation theory, function spaces and operators, partial differential equations and analysis on bounded symmetric domains.

An Introduction to Sobolev Spaces and Interpolation Spaces

An Introduction to Sobolev Spaces and Interpolation Spaces
Title An Introduction to Sobolev Spaces and Interpolation Spaces PDF eBook
Author Luc Tartar
Publisher Springer Science & Business Media
Pages 219
Release 2007-05-26
Genre Mathematics
ISBN 3540714839

Download An Introduction to Sobolev Spaces and Interpolation Spaces Book in PDF, Epub and Kindle

After publishing an introduction to the Navier–Stokes equation and oceanography (Vol. 1 of this series), Luc Tartar follows with another set of lecture notes based on a graduate course in two parts, as indicated by the title. A draft has been available on the internet for a few years. The author has now revised and polished it into a text accessible to a larger audience.

Interpolation and Sampling in Spaces of Analytic Functions

Interpolation and Sampling in Spaces of Analytic Functions
Title Interpolation and Sampling in Spaces of Analytic Functions PDF eBook
Author Kristian Seip
Publisher American Mathematical Soc.
Pages 153
Release 2004
Genre Mathematics
ISBN 0821835548

Download Interpolation and Sampling in Spaces of Analytic Functions Book in PDF, Epub and Kindle

Based on a series of six lectures given by the author at the University of Michigan, this book is intended as an introduction to the topic of interpolation and sampling in analytic function spaces. The three major topics covered are Nevanlinna-Pick interpolation, Carleson's interpolation theorem, an

Function Spaces, Interpolation Spaces, and Related Topics

Function Spaces, Interpolation Spaces, and Related Topics
Title Function Spaces, Interpolation Spaces, and Related Topics PDF eBook
Author Michael Cwikel
Publisher
Pages 244
Release 1999
Genre Function spaces
ISBN

Download Function Spaces, Interpolation Spaces, and Related Topics Book in PDF, Epub and Kindle

This volume presents the proceedings of the international workshop held at the Technion-Israel Institute of Technology. Included are research and survey articles on interpolation theory and function spaces.

Pick Interpolation and Hilbert Function Spaces

Pick Interpolation and Hilbert Function Spaces
Title Pick Interpolation and Hilbert Function Spaces PDF eBook
Author Jim Agler
Publisher American Mathematical Society
Pages 330
Release 2023-02-22
Genre Mathematics
ISBN 1470468557

Download Pick Interpolation and Hilbert Function Spaces Book in PDF, Epub and Kindle

The book first rigorously develops the theory of reproducing kernel Hilbert spaces. The authors then discuss the Pick problem of finding the function of smallest $H^infty$ norm that has specified values at a finite number of points in the disk. Their viewpoint is to consider $H^infty$ as the multiplier algebra of the Hardy space and to use Hilbert space techniques to solve the problem. This approach generalizes to a wide collection of spaces. The authors then consider the interpolation problem in the space of bounded analytic functions on the bidisk and give a complete description of the solution. They then consider very general interpolation problems. The book includes developments of all the theory that is needed, including operator model theory, the Arveson extension theorem, and the hereditary functional calculus.

The Dirichlet Space and Related Function Spaces

The Dirichlet Space and Related Function Spaces
Title The Dirichlet Space and Related Function Spaces PDF eBook
Author Nicola Arcozzi
Publisher American Mathematical Soc.
Pages 559
Release 2019-09-03
Genre Mathematics
ISBN 1470450828

Download The Dirichlet Space and Related Function Spaces Book in PDF, Epub and Kindle

The study of the classical Dirichlet space is one of the central topics on the intersection of the theory of holomorphic functions and functional analysis. It was introduced about100 years ago and continues to be an area of active current research. The theory is related to such important themes as multipliers, reproducing kernels, and Besov spaces, among others. The authors present the theory of the Dirichlet space and related spaces starting with classical results and including some quite recent achievements like Dirichlet-type spaces of functions in several complex variables and the corona problem. The first part of this book is an introduction to the function theory and operator theory of the classical Dirichlet space, a space of holomorphic functions on the unit disk defined by a smoothness criterion. The Dirichlet space is also a Hilbert space with a reproducing kernel, and is the model for the dyadic Dirichlet space, a sequence space defined on the dyadic tree. These various viewpoints are used to study a range of topics including the Pick property, multipliers, Carleson measures, boundary values, zero sets, interpolating sequences, the local Dirichlet integral, shift invariant subspaces, and Hankel forms. Recurring themes include analogies, sometimes weak and sometimes strong, with the classical Hardy space; and the analogy with the dyadic Dirichlet space. The final chapters of the book focus on Besov spaces of holomorphic functions on the complex unit ball, a class of Banach spaces generalizing the Dirichlet space. Additional techniques are developed to work with the nonisotropic complex geometry, including a useful invariant definition of local oscillation and a sophisticated variation on the dyadic Dirichlet space. Descriptions are obtained of multipliers, Carleson measures, interpolating sequences, and multiplier interpolating sequences; estimates are obtained to prove corona theorems.