Scientific Frontiers in Developmental Toxicology and Risk Assessment
Title | Scientific Frontiers in Developmental Toxicology and Risk Assessment PDF eBook |
Author | National Research Council |
Publisher | National Academies Press |
Pages | 348 |
Release | 2000-12-21 |
Genre | Nature |
ISBN | 0309070864 |
Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.
Forces in Biology - Cell and Developmental Mechanobiology and Its Implications in Disease
Title | Forces in Biology - Cell and Developmental Mechanobiology and Its Implications in Disease PDF eBook |
Author | Selwin K. Wu |
Publisher | Frontiers Media SA |
Pages | 171 |
Release | 2020-12-11 |
Genre | Science |
ISBN | 2889662179 |
Cell Adhesion and Migration in the Development of Multicellular Organisms
Title | Cell Adhesion and Migration in the Development of Multicellular Organisms PDF eBook |
Author | Takaaki Matsui |
Publisher | Frontiers Media SA |
Pages | 122 |
Release | 2019-01-24 |
Genre | |
ISBN | 2889456943 |
During development, cells are generated at specific locations within the embryo and then migrate into their destinations. At their destinations, they assemble together through cell adhesions, eventually leading to the formation of tissues and organs. In some cases, orchestration of cell adhesion and migration produces the global movement of cell groups, called collective cell migration, which is also required for the development of basic tissue structures such as spheres, clusters, and vesicles in the morphogenetic processes of development. Therefore, individual regulation and orchestration of cell adhesion and migration are quite important for appropriate tissue/organ formation during development. However, how cell adhesion and migration are regulated, and orchestrated during development? How cell adhesion and migration affects tissue formation during development? To answer these questions, we assembled several review and research articles in this eBook. By assembling these articles, we could explore the presence of core regulatory mechanisms and deepen the current understanding of cell adhesion and migration during the development of multicellular organisms.
Frontiers in Computational and Systems Biology
Title | Frontiers in Computational and Systems Biology PDF eBook |
Author | Jianfeng Feng |
Publisher | Springer Science & Business Media |
Pages | 411 |
Release | 2010-06-14 |
Genre | Science |
ISBN | 1849961964 |
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician’s fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual’s susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain–machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.
Golgi Dynamics in Physiological and Pathological Conditions
Title | Golgi Dynamics in Physiological and Pathological Conditions PDF eBook |
Author | Jaakko Saraste |
Publisher | Frontiers Media SA |
Pages | 359 |
Release | 2020-03-04 |
Genre | |
ISBN | 2889635392 |
Molecular and Cellular Mechanisms in Reproduction and Early Development
Title | Molecular and Cellular Mechanisms in Reproduction and Early Development PDF eBook |
Author | Rafael A. Fissore |
Publisher | Frontiers Media SA |
Pages | 145 |
Release | 2019-08-20 |
Genre | |
ISBN | 2889459446 |
The Research Topic aims to support progress towards understanding the different sets of developmental processes that are absolutely required to complete all the steps essential for successful embryonic development, under physiological conditions. We sought contributions that dealt with single cells, interaction between cells as well as intra- and extracellular signal transduction. The Research Topic presents original studies covering experimental and theoretical approaches, descriptions of new methodologies, reviews and opinions.
Introduction to Single Cell Omics
Title | Introduction to Single Cell Omics PDF eBook |
Author | Xinghua Pan |
Publisher | Frontiers Media SA |
Pages | 129 |
Release | 2019-09-19 |
Genre | |
ISBN | 2889459209 |
Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.