Financial Statistics and Mathematical Finance

Financial Statistics and Mathematical Finance
Title Financial Statistics and Mathematical Finance PDF eBook
Author Ansgar Steland
Publisher John Wiley & Sons
Pages 355
Release 2012-06-21
Genre Business & Economics
ISBN 1118316568

Download Financial Statistics and Mathematical Finance Book in PDF, Epub and Kindle

Mathematical finance has grown into a huge area of research which requires a lot of care and a large number of sophisticated mathematical tools. Mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, it considers various aspects of the application of statistical methods in finance and illustrates some of the many ways that statistical tools are used in financial applications. Financial Statistics and Mathematical Finance: Provides an introduction to the basics of financial statistics and mathematical finance. Explains the use and importance of statistical methods in econometrics and financial engineering. Illustrates the importance of derivatives and calculus to aid understanding in methods and results. Looks at advanced topics such as martingale theory, stochastic processes and stochastic integration. Features examples throughout to illustrate applications in mathematical and statistical finance. Is supported by an accompanying website featuring R code and data sets. Financial Statistics and Mathematical Finance introduces the financial methodology and the relevant mathematical tools in a style that is both mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, both graduate students and researchers in statistics, finance, econometrics and business administration will benefit from this book.

From Statistics to Mathematical Finance

From Statistics to Mathematical Finance
Title From Statistics to Mathematical Finance PDF eBook
Author Dietmar Ferger
Publisher Springer
Pages 437
Release 2017-10-28
Genre Mathematics
ISBN 3319509861

Download From Statistics to Mathematical Finance Book in PDF, Epub and Kindle

This book, dedicated to Winfried Stute on the occasion of his 70th birthday, presents a unique collection of contributions by leading experts in statistics, stochastic processes, mathematical finance and insurance. The individual chapters cover a wide variety of topics ranging from nonparametric estimation, regression modelling and asymptotic bounds for estimators, to shot-noise processes in finance, option pricing and volatility modelling. The book also features review articles, e.g. on survival analysis.

Mathematical Finance

Mathematical Finance
Title Mathematical Finance PDF eBook
Author Nikolai Dokuchaev
Publisher Routledge
Pages 234
Release 2007-02-01
Genre Business & Economics
ISBN 1134121970

Download Mathematical Finance Book in PDF, Epub and Kindle

Written in a rigorous yet logical and easy to use style, spanning a range of disciplines, including business, mathematics, finance and economics, this comprehensive textbook offers a systematic, self-sufficient yet concise presentation of the main topics and related parts of stochastic analysis and statistical finance that are covered in the majori

Measure, Probability, and Mathematical Finance

Measure, Probability, and Mathematical Finance
Title Measure, Probability, and Mathematical Finance PDF eBook
Author Guojun Gan
Publisher John Wiley & Sons
Pages 54
Release 2014-04-07
Genre Mathematics
ISBN 1118831969

Download Measure, Probability, and Mathematical Finance Book in PDF, Epub and Kindle

An introduction to the mathematical theory and financial models developed and used on Wall Street Providing both a theoretical and practical approach to the underlying mathematical theory behind financial models, Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach presents important concepts and results in measure theory, probability theory, stochastic processes, and stochastic calculus. Measure theory is indispensable to the rigorous development of probability theory and is also necessary to properly address martingale measures, the change of numeraire theory, and LIBOR market models. In addition, probability theory is presented to facilitate the development of stochastic processes, including martingales and Brownian motions, while stochastic processes and stochastic calculus are discussed to model asset prices and develop derivative pricing models. The authors promote a problem-solving approach when applying mathematics in real-world situations, and readers are encouraged to address theorems and problems with mathematical rigor. In addition, Measure, Probability, and Mathematical Finance features: A comprehensive list of concepts and theorems from measure theory, probability theory, stochastic processes, and stochastic calculus Over 500 problems with hints and select solutions to reinforce basic concepts and important theorems Classic derivative pricing models in mathematical finance that have been developed and published since the seminal work of Black and Scholes Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach is an ideal textbook for introductory quantitative courses in business, economics, and mathematical finance at the upper-undergraduate and graduate levels. The book is also a useful reference for readers who need to build their mathematical skills in order to better understand the mathematical theory of derivative pricing models.

Quantitative Finance

Quantitative Finance
Title Quantitative Finance PDF eBook
Author Maria Cristina Mariani
Publisher John Wiley & Sons
Pages 494
Release 2019-11-06
Genre Business & Economics
ISBN 1118629965

Download Quantitative Finance Book in PDF, Epub and Kindle

Presents a multitude of topics relevant to the quantitative finance community by combining the best of the theory with the usefulness of applications Written by accomplished teachers and researchers in the field, this book presents quantitative finance theory through applications to specific practical problems and comes with accompanying coding techniques in R and MATLAB, and some generic pseudo-algorithms to modern finance. It also offers over 300 examples and exercises that are appropriate for the beginning student as well as the practitioner in the field. The Quantitative Finance book is divided into four parts. Part One begins by providing readers with the theoretical backdrop needed from probability and stochastic processes. We also present some useful finance concepts used throughout the book. In part two of the book we present the classical Black-Scholes-Merton model in a uniquely accessible and understandable way. Implied volatility as well as local volatility surfaces are also discussed. Next, solutions to Partial Differential Equations (PDE), wavelets and Fourier transforms are presented. Several methodologies for pricing options namely, tree methods, finite difference method and Monte Carlo simulation methods are also discussed. We conclude this part with a discussion on stochastic differential equations (SDE’s). In the third part of this book, several new and advanced models from current literature such as general Lvy processes, nonlinear PDE's for stochastic volatility models in a transaction fee market, PDE's in a jump-diffusion with stochastic volatility models and factor and copulas models are discussed. In part four of the book, we conclude with a solid presentation of the typical topics in fixed income securities and derivatives. We discuss models for pricing bonds market, marketable securities, credit default swaps (CDS) and securitizations. Classroom-tested over a three-year period with the input of students and experienced practitioners Emphasizes the volatility of financial analyses and interpretations Weaves theory with application throughout the book Utilizes R and MATLAB software programs Presents pseudo-algorithms for readers who do not have access to any particular programming system Supplemented with extensive author-maintained web site that includes helpful teaching hints, data sets, software programs, and additional content Quantitative Finance is an ideal textbook for upper-undergraduate and beginning graduate students in statistics, financial engineering, quantitative finance, and mathematical finance programs. It will also appeal to practitioners in the same fields.

Mathematical Finance

Mathematical Finance
Title Mathematical Finance PDF eBook
Author Ernst Eberlein
Publisher Springer Nature
Pages 774
Release 2019-12-03
Genre Mathematics
ISBN 3030261069

Download Mathematical Finance Book in PDF, Epub and Kindle

Taking continuous-time stochastic processes allowing for jumps as its starting and focal point, this book provides an accessible introduction to the stochastic calculus and control of semimartingales and explains the basic concepts of Mathematical Finance such as arbitrage theory, hedging, valuation principles, portfolio choice, and term structure modelling. It bridges thegap between introductory texts and the advanced literature in the field. Most textbooks on the subject are limited to diffusion-type models which cannot easily account for sudden price movements. Such abrupt changes, however, can often be observed in real markets. At the same time, purely discontinuous processes lead to a much wider variety of flexible and tractable models. This explains why processes with jumps have become an established tool in the statistics and mathematics of finance. Graduate students, researchers as well as practitioners will benefit from this monograph.

Statistics and Data Analysis for Financial Engineering

Statistics and Data Analysis for Financial Engineering
Title Statistics and Data Analysis for Financial Engineering PDF eBook
Author David Ruppert
Publisher Springer
Pages 736
Release 2015-04-21
Genre Business & Economics
ISBN 1493926144

Download Statistics and Data Analysis for Financial Engineering Book in PDF, Epub and Kindle

The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.