Complex Nonlinearity
Title | Complex Nonlinearity PDF eBook |
Author | Vladimir G. Ivancevic |
Publisher | Springer Science & Business Media |
Pages | 855 |
Release | 2008-05-31 |
Genre | Science |
ISBN | 3540793577 |
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.
From Phase Transitions to Chaos
Title | From Phase Transitions to Chaos PDF eBook |
Author | Gza Gyrgyi |
Publisher | World Scientific |
Pages | 608 |
Release | 1992 |
Genre | Science |
ISBN | 9789810209384 |
This volume comprises about forty research papers and essays covering a wide range of subjects in the forefront of contemporary statistical physics. The contributors are renown scientists and leading authorities in several different fields. This book is dedicated to Pter Szpfalusy on the occasion of his sixtieth birthday. Emphasis is placed on his two main areas of research, namely phase transitions and chaotic dynamical systems, as they share common aspects like the applicability of the probabilistic approach or scaling behaviour and universality. Several papers deal with equilibrium phase transitions, critical dynamics, and pattern formation. Also represented are disordered systems, random field systems, growth processes, and neural network. Statistical properties of interacting electron gases, such as the Kondo lattice, the Wigner crystal, and the Hubbard model, are treated. In the field of chaos, Hamiltonian transport and resonances, strange attractors, multifractal characteristics of chaos, and the effect of weak perturbations are discussed. A separate section is devoted to selected mathematical aspects of dynamical systems like the foundation of statistical mechanics, including the problem of ergodicity, and rigorous results on quantum chaos.
Phase Transitions
Title | Phase Transitions PDF eBook |
Author | Ricard V. Solé |
Publisher | Princeton University Press |
Pages | 238 |
Release | 2011-08-14 |
Genre | Mathematics |
ISBN | 0691150753 |
Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of life, viral replication, epidemics, language evolution, and the emergence and breakdown of societies. Written at an undergraduate mathematical level, this book provides the essential theoretical tools and foundations required to develop basic models to explain collective phase transitions for a wide variety of ecosystems.
Chaotic Transitions in Deterministic and Stochastic Dynamical Systems
Title | Chaotic Transitions in Deterministic and Stochastic Dynamical Systems PDF eBook |
Author | Emil Simiu |
Publisher | Princeton University Press |
Pages | 244 |
Release | 2014-09-08 |
Genre | Mathematics |
ISBN | 1400832500 |
The classical Melnikov method provides information on the behavior of deterministic planar systems that may exhibit transitions, i.e. escapes from and captures into preferred regions of phase space. This book develops a unified treatment of deterministic and stochastic systems that extends the applicability of the Melnikov method to physically realizable stochastic planar systems with additive, state-dependent, white, colored, or dichotomous noise. The extended Melnikov method yields the novel result that motions with transitions are chaotic regardless of whether the excitation is deterministic or stochastic. It explains the role in the occurrence of transitions of the characteristics of the system and its deterministic or stochastic excitation, and is a powerful modeling and identification tool. The book is designed primarily for readers interested in applications. The level of preparation required corresponds to the equivalent of a first-year graduate course in applied mathematics. No previous exposure to dynamical systems theory or the theory of stochastic processes is required. The theoretical prerequisites and developments are presented in the first part of the book. The second part of the book is devoted to applications, ranging from physics to mechanical engineering, naval architecture, oceanography, nonlinear control, stochastic resonance, and neurophysiology.
Chaos and Dynamical Systems
Title | Chaos and Dynamical Systems PDF eBook |
Author | David P. Feldman |
Publisher | Princeton University Press |
Pages | 262 |
Release | 2019-08-06 |
Genre | Mathematics |
ISBN | 0691161526 |
Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, important and exciting areas that have shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.
Reconstructive Phase Transitions
Title | Reconstructive Phase Transitions PDF eBook |
Author | Pierre Toldano |
Publisher | World Scientific |
Pages | 424 |
Release | 1996 |
Genre | Science |
ISBN | 9789810223649 |
This book deals with the phenomenological theory of first-order structural phase transitions, with a special emphasis on reconstructive transformations in which a group-subgroup relationship between the symmetries of the phases is absent. It starts with a unified presentation of the current approach to first-order phase transitions, using the more recent results of the Landau theory of phase transitions and of the theory of singularities. A general theory of reconstructive phase transitions is then formulated, in which the structures surrounding a transition are expressed in terms of density-waves, providing a natural definition of the transition order-parameters, and a description of the corresponding phase diagrams and relevant physical properties. The applicability of the theory is illustrated by a large number of concrete examples pertaining to the various classes of reconstructive transitions: allotropic transformations of the elements, displacive and order-disorder transformations in metals, alloys and related structures, crystal-quasicrystal transformations.
Scale Invariance
Title | Scale Invariance PDF eBook |
Author | Annick LESNE |
Publisher | Springer Science & Business Media |
Pages | 406 |
Release | 2011-11-04 |
Genre | Science |
ISBN | 364215123X |
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.