From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory
Title | From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory PDF eBook |
Author | Fritz Gesztesy |
Publisher | Springer Nature |
Pages | 388 |
Release | 2021-11-11 |
Genre | Mathematics |
ISBN | 3030754251 |
The main topics of this volume, dedicated to Lance Littlejohn, are operator and spectral theory, orthogonal polynomials, combinatorics, number theory, and the various interplays of these subjects. Although the event, originally scheduled as the Baylor Analysis Fest, had to be postponed due to the pandemic, scholars from around the globe have contributed research in a broad range of mathematical fields. The collection will be of interest to both graduate students and professional mathematicians. Contributors are: G.E. Andrews, B.M. Brown, D. Damanik, M.L. Dawsey, W.D. Evans, J. Fillman, D. Frymark, A.G. García, L.G. Garza, F. Gesztesy, D. Gómez-Ullate, Y. Grandati, F.A. Grünbaum, S. Guo, M. Hunziker, A. Iserles, T.F. Jones, K. Kirsten, Y. Lee, C. Liaw, F. Marcellán, C. Markett, A. Martinez-Finkelshtein, D. McCarthy, R. Milson, D. Mitrea, I. Mitrea, M. Mitrea, G. Novello, D. Ong, K. Ono, J.L. Padgett, M.M.M. Pang, T. Poe, A. Sri Ranga, K. Schiefermayr, Q. Sheng, B. Simanek, J. Stanfill, L. Velázquez, M. Webb, J. Wilkening, I.G. Wood, M. Zinchenko.
From Complex Analysis to Operator Theory: A Panorama
Title | From Complex Analysis to Operator Theory: A Panorama PDF eBook |
Author | Malcolm Brown |
Publisher | Springer Nature |
Pages | 731 |
Release | 2023-09-21 |
Genre | Mathematics |
ISBN | 3031311396 |
This volume is dedicated to the memory of Sergey Naboko (1950-2020). In addition to original research contributions covering the vast areas of interest of Sergey Naboko, it includes personal reminiscences and comments on the works and legacy of Sergey Naboko’s scientific achievements. Areas from complex analysis to operator theory, especially, spectral theory, are covered, and the papers will inspire current and future researchers in these areas.
Coimbra Lecture Notes on Orthogonal Polynomials
Title | Coimbra Lecture Notes on Orthogonal Polynomials PDF eBook |
Author | Amilcar Jose Pinto Lopes Branquinho |
Publisher | Nova Publishers |
Pages | 250 |
Release | 2008 |
Genre | Mathematics |
ISBN | 9781600219726 |
Orthogonal Polynomials and Special Functions (OPSF) have a very rich history, going back to 19th century when mathematicians and physicists tried to solve the most important deferential equations of mathematical physics. Hermite-Padé approximation was also introduced at that time, to prove the transcendence of the remarkable constant e (the basis of the natural logarithm). Since then OPSF has developed to a standard subject within mathematics, which is driven by applications. The applications are numerous, both within mathematics (e.g. statistics, combinatory, harmonic analysis, number theory) and other sciences, such as physics, biology, computer science, chemistry. The main reason for the fact that OPSF has been so successful over the centuries is its usefulness in other branches of mathematics and physics, as well as other sciences. There are many different aspects of OPSF. Some of the most important developments for OPSF are related to the theory of rational approximation of analytic functions, in particular the extension to simultaneous rational approximation to a system of functions. Important tools for rational approximation are Riemann-Hilbert problems, the theory of orthogonal polynomials, logarithmic potential theory, and operator theory for difference operators. This new book presents the latest research in the field.
Symmetric Functions and Combinatorial Operators on Polynomials
Title | Symmetric Functions and Combinatorial Operators on Polynomials PDF eBook |
Author | Alain Lascoux |
Publisher | American Mathematical Soc. |
Pages | 282 |
Release | |
Genre | Science |
ISBN | 9780821889435 |
The theory of symmetric functions is an old topic in mathematics which is used as an algebraic tool in many classical fields. With $\lambda$-rings, one can regard symmetric functions as operators on polynomials and reduce the theory to just a handful of fundamental formulas. One of the main goals of the book is to describe the technique of $\lambda$-rings. The main applications of this technique to the theory of symmetric functions are related to the Euclid algorithm and itsoccurrence in division, continued fractions, Pade approximants, and orthogonal polynomials. Putting the emphasis on the symmetric group instead of symmetric functions, one can extend the theory to non-symmetric polynomials, with Schur functions being replaced by Schubert polynomials. In two independentchapters, the author describes the main properties of these polynomials, following either the approach of Newton and interpolation methods or the method of Cauchy. The last chapter sketches a non-commutative version of symmetric functions, using Young tableaux and the plactic monoid. The book contains numerous exercises clarifying and extending many points of the main text. It will make an excellent supplementary text for a graduate course in combinatorics.
Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday
Title | Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday PDF eBook |
Author | Fritz Gesztesy |
Publisher | American Mathematical Soc. |
Pages | 472 |
Release | 2007 |
Genre | Mathematics |
ISBN | 9780821842492 |
This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields, and the Semiclassical Limit. Part 2 contains surveys in the areas of Random andErgodic Schrodinger Operators, Singular Continuous Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory. In several cases, this collection of surveys portrays both the history of a subject and its current state of the art. A substantial part of the contributions to this Festschrift are survey articles on the state of the art of certain areas with special emphasis on open problems. This will benefit graduate students as well as researchers who want to get a quick, yet comprehensiveintroduction into an area covered in this volume.
An Indefinite Excursion in Operator Theory
Title | An Indefinite Excursion in Operator Theory PDF eBook |
Author | Aurelian Gheondea |
Publisher | Cambridge University Press |
Pages | |
Release | 2022-07-28 |
Genre | Mathematics |
ISBN | 1108981275 |
This modern introduction to operator theory on spaces with indefinite inner product discusses the geometry and the spectral theory of linear operators on these spaces, the deep interplay with complex analysis, and applications to interpolation problems. The text covers the key results from the last four decades in a readable way with full proofs provided throughout. Step by step, the reader is guided through the intricate geometry and topology of spaces with indefinite inner product, before progressing to a presentation of the geometry and spectral theory on these spaces. The author carefully highlights where difficulties arise and what tools are available to overcome them. With generous background material included in the appendices, this text is an excellent resource for researchers in operator theory, functional analysis, and related areas as well as for graduate students.
Lectures on Orthogonal Polynomials and Special Functions
Title | Lectures on Orthogonal Polynomials and Special Functions PDF eBook |
Author | Howard S. Cohl |
Publisher | Cambridge University Press |
Pages | 351 |
Release | 2020-10-15 |
Genre | Mathematics |
ISBN | 1108821596 |
Contains graduate-level introductions by international experts to five areas of research in orthogonal polynomials and special functions.