From Fourier Analysis and Number Theory to Radon Transforms and Geometry
Title | From Fourier Analysis and Number Theory to Radon Transforms and Geometry PDF eBook |
Author | Hershel M. Farkas |
Publisher | Springer Science & Business Media |
Pages | 567 |
Release | 2012-09-18 |
Genre | Mathematics |
ISBN | 1461440742 |
A memorial conference for Leon Ehrenpreis was held at Temple University, November 15-16, 2010. In the spirit of Ehrenpreis’s contribution to mathematics, the papers in this volume, written by prominent mathematicians, represent the wide breadth of subjects that Ehrenpreis traversed in his career, including partial differential equations, combinatorics, number theory, complex analysis and a bit of applied mathematics. With the exception of one survey article, the papers in this volume are all new results in the various fields in which Ehrenpreis worked . There are papers in pure analysis, papers in number theory, papers in what may be called applied mathematics such as population biology and parallel refractors and papers in partial differential equations. The mature mathematician will find new mathematics and the advanced graduate student will find many new ideas to explore.A biographical sketch of Leon Ehrenpreis by his daughter, a professional journalist, enhances the memorial tribute and gives the reader a glimpse into the life and career of a great mathematician.
Number Theory, Fourier Analysis and Geometric Discrepancy
Title | Number Theory, Fourier Analysis and Geometric Discrepancy PDF eBook |
Author | Giancarlo Travaglini |
Publisher | Cambridge University Press |
Pages | 251 |
Release | 2014-06-12 |
Genre | Mathematics |
ISBN | 1139992821 |
The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma–Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions.
The Radon Transform
Title | The Radon Transform PDF eBook |
Author | Sigurdur Helgason |
Publisher | Springer Science & Business Media |
Pages | 214 |
Release | 1999-08-01 |
Genre | Mathematics |
ISBN | 9780817641092 |
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.
Integral Geometry and Radon Transforms
Title | Integral Geometry and Radon Transforms PDF eBook |
Author | Sigurdur Helgason |
Publisher | Springer Science & Business Media |
Pages | 309 |
Release | 2010-11-17 |
Genre | Mathematics |
ISBN | 1441960546 |
In this text, integral geometry deals with Radon’s problem of representing a function on a manifold in terms of its integrals over certain submanifolds—hence the term the Radon transform. Examples and far-reaching generalizations lead to fundamental problems such as: (i) injectivity, (ii) inversion formulas, (iii) support questions, (iv) applications (e.g., to tomography, partial di erential equations and group representations). For the case of the plane, the inversion theorem and the support theorem have had major applications in medicine through tomography and CAT scanning. While containing some recent research, the book is aimed at beginning graduate students for classroom use or self-study. A number of exercises point to further results with documentation. From the reviews: “Integral Geometry is a fascinating area, where numerous branches of mathematics meet together. the contents of the book is concentrated around the duality and double vibration, which is realized through the masterful treatment of a variety of examples. the book is written by an expert, who has made fundamental contributions to the area.” —Boris Rubin, Louisiana State University
Number Theory, Fourier Analysis and Geometric Discrepancy
Title | Number Theory, Fourier Analysis and Geometric Discrepancy PDF eBook |
Author | Giancarlo Travaglini |
Publisher | Cambridge University Press |
Pages | 251 |
Release | 2014-06-12 |
Genre | Mathematics |
ISBN | 1107044030 |
Classical number theory is developed from scratch leading to geometric discrepancy theory, with Fourier analysis introduced along the way.
Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis
Title | Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis PDF eBook |
Author | Eric Grinberg |
Publisher | American Mathematical Soc. |
Pages | 524 |
Release | 2000 |
Genre | Mathematics |
ISBN | 0821811487 |
This book presents the proceedings from the conference honoring the work of Leon Ehrenpreis. Professor Ehrenpreis worked in many different areas of mathematics and found connections among all of them. For example, one can find his analytic ideas in the context of number theory, geometric thinking within analysis, transcendental number theory applied to partial differential equations, and more. The conference brought together the communities of mathematicians working in the areas of interest to Professor Ehrenpreis and allowed them to share the research inspired by his work. The collection of articles here presents current research on PDEs, several complex variables, analytic number theory, integral geometry, and tomography. The work of Professor Ehrenpreis has contributed to basic definitions in these areas and has motivated a wealth of research results. This volume offers a survey of the fundamental principles that unified the conference and influenced the mathematics of Leon Ehrenpreis.
Number Theory – Diophantine Problems, Uniform Distribution and Applications
Title | Number Theory – Diophantine Problems, Uniform Distribution and Applications PDF eBook |
Author | Christian Elsholtz |
Publisher | Springer |
Pages | 447 |
Release | 2017-05-26 |
Genre | Mathematics |
ISBN | 3319553577 |
This volume is dedicated to Robert F. Tichy on the occasion of his 60th birthday. Presenting 22 research and survey papers written by leading experts in their respective fields, it focuses on areas that align with Tichy’s research interests and which he significantly shaped, including Diophantine problems, asymptotic counting, uniform distribution and discrepancy of sequences (in theory and application), dynamical systems, prime numbers, and actuarial mathematics. Offering valuable insights into recent developments in these areas, the book will be of interest to researchers and graduate students engaged in number theory and its applications.