From Finite Sample to Asymptotic Methods in Statistics

From Finite Sample to Asymptotic Methods in Statistics
Title From Finite Sample to Asymptotic Methods in Statistics PDF eBook
Author Pranab K. Sen
Publisher Cambridge University Press
Pages 399
Release 2010
Genre Mathematics
ISBN 0521877229

Download From Finite Sample to Asymptotic Methods in Statistics Book in PDF, Epub and Kindle

A broad view of exact statistical inference and the development of asymptotic statistical inference.

Statistical Estimation

Statistical Estimation
Title Statistical Estimation PDF eBook
Author I.A. Ibragimov
Publisher Springer Science & Business Media
Pages 410
Release 2013-11-11
Genre Mathematics
ISBN 1489900276

Download Statistical Estimation Book in PDF, Epub and Kindle

when certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2, ... , X n be independent observations with the joint probability density !(x,O) (with respect to the Lebesgue measure on the real line) which depends on the unknown patameter o e 9 c R1. It is required to derive the best (asymptotically) estimator 0:( X b ... , X n) of the parameter O. The first question which arises in connection with this problem is how to compare different estimators or, equivalently, how to assess their quality, in terms of the mean square deviation from the parameter or perhaps in some other way. The presently accepted approach to this problem, resulting from A. Wald's contributions, is as follows: introduce a nonnegative function w(0l> ( ), Ob Oe 9 (the loss function) and given two estimators Of and O! n 2 2 the estimator for which the expected loss (risk) Eown(Oj, 0), j = 1 or 2, is smallest is called the better with respect to Wn at point 0 (here EoO is the expectation evaluated under the assumption that the true value of the parameter is 0). Obviously, such a method of comparison is not without its defects.

A Course in Large Sample Theory

A Course in Large Sample Theory
Title A Course in Large Sample Theory PDF eBook
Author Thomas S. Ferguson
Publisher Routledge
Pages 192
Release 2017-09-06
Genre Mathematics
ISBN 1351470051

Download A Course in Large Sample Theory Book in PDF, Epub and Kindle

A Course in Large Sample Theory is presented in four parts. The first treats basic probabilistic notions, the second features the basic statistical tools for expanding the theory, the third contains special topics as applications of the general theory, and the fourth covers more standard statistical topics. Nearly all topics are covered in their multivariate setting.The book is intended as a first year graduate course in large sample theory for statisticians. It has been used by graduate students in statistics, biostatistics, mathematics, and related fields. Throughout the book there are many examples and exercises with solutions. It is an ideal text for self study.

Asymptotic Statistics

Asymptotic Statistics
Title Asymptotic Statistics PDF eBook
Author A. W. van der Vaart
Publisher Cambridge University Press
Pages 470
Release 2000-06-19
Genre Mathematics
ISBN 9780521784504

Download Asymptotic Statistics Book in PDF, Epub and Kindle

This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master s level statistics text, this book will also give researchers an overview of the latest research in asymptotic statistics.

Methods for Estimation and Inference in Modern Econometrics

Methods for Estimation and Inference in Modern Econometrics
Title Methods for Estimation and Inference in Modern Econometrics PDF eBook
Author Stanislav Anatolyev
Publisher CRC Press
Pages 230
Release 2011-06-07
Genre Business & Economics
ISBN 1439838267

Download Methods for Estimation and Inference in Modern Econometrics Book in PDF, Epub and Kindle

This book covers important topics in econometrics. It discusses methods for efficient estimation in models defined by unconditional and conditional moment restrictions, inference in misspecified models, generalized empirical likelihood estimators, and alternative asymptotic approximations. The first chapter provides a general overview of established nonparametric and parametric approaches to estimation and conventional frameworks for statistical inference. The next several chapters focus on the estimation of models based on moment restrictions implied by economic theory. The final chapters cover nonconventional asymptotic tools that lead to improved finite-sample inference.

Microeconometrics

Microeconometrics
Title Microeconometrics PDF eBook
Author A. Colin Cameron
Publisher Cambridge University Press
Pages 1058
Release 2005-05-09
Genre Business & Economics
ISBN 1139444867

Download Microeconometrics Book in PDF, Epub and Kindle

This book provides the most comprehensive treatment to date of microeconometrics, the analysis of individual-level data on the economic behavior of individuals or firms using regression methods for cross section and panel data. The book is oriented to the practitioner. A basic understanding of the linear regression model with matrix algebra is assumed. The text can be used for a microeconometrics course, typically a second-year economics PhD course; for data-oriented applied microeconometrics field courses; and as a reference work for graduate students and applied researchers who wish to fill in gaps in their toolkit. Distinguishing features of the book include emphasis on nonlinear models and robust inference, simulation-based estimation, and problems of complex survey data. The book makes frequent use of numerical examples based on generated data to illustrate the key models and methods. More substantially, it systematically integrates into the text empirical illustrations based on seven large and exceptionally rich data sets.

Finite Sample Econometrics

Finite Sample Econometrics
Title Finite Sample Econometrics PDF eBook
Author Aman Ullah
Publisher Oxford University Press
Pages 241
Release 2004-05-20
Genre Business & Economics
ISBN 0198774478

Download Finite Sample Econometrics Book in PDF, Epub and Kindle

This text provides a comprehensive treatment of finite sample statistics and econometrics. Within this framework, the book discusses the basic analytical tools of finite sample econometrics and explores their applications to models covered in a first year graduate course in econometrics.